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 Whether used as main processing engines or as special-purpose adjuncts, 

processor arrays are capable of boosting performance for a variety of 

computation-intensive applications. For large processor arrays, needed to 

achieve the required performance level in the age of big data, processor 

malfunctions, resulting in loss of computational capabilities, form a primary 

concern. There is no shortage of alternative reconfiguration architectures and 

associated algorithms for building robust processor arrays. However, a 

commensurately extensive body of knowledge about the reliability modeling 

aspects of such arrays is lacking. We study differences between 2D arrays 

with centralized and distributed switching, pointing out the advantages of the 

latter in terms of reliability, regularity, modularity, and VLSI realizability. 

Notions of reliability inversion (modeling uncertainties that might lead us to 

choose a less-reliable system over one with higher reliability) and 

modelability (system property that makes the derivation of tight reliability 

bounds possible, thus making reliability inversion much less likely) follow as 

important byproducts of our study. 
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1. INTRODUCTION 

Reconfiguration can be used at system, architecture, and circuit levels to establish alternate or 

bypass signal paths in order to circumvent parts that have been rendered unusable by defects or malfunctions. 

We cite just a few examples: Defect tolerance for VLSI yield improvement [1], computation-mapping onto 

an incomplete or damaged FPGA using alternate components and interconnects [2], and building gracefully-

degrading array processors [3]. A number of architecture-level methods for allowing a system to adapt to 

changing conditions can also fall in this category, although some may not be readily recognized as 

reconfiguration. Note, for example, that replacing a failed functional unit with a spare one upon failure 

detection, is the same as restructuring an (s + 1)-unit “parallel” system by switching-out the previously-active 

module and switching-in one of the s spare modules [4]. 

In the just-cited references, and in the context of this work, the goal of reconfiguration is returning a 

processor array containing a number of malfunctioning nodes to the original intact configuration, in order to 

run the existing algorithms with no modifications. Stated differently, we will not consider the use of a 

damaged array, providing a degraded level of inter-node connectivity, owing to bandwidth limitation, path 

dilation, or resource reduction [5], which would require computations to be remapped by increasing 

processor loads and/or link communication traffic. Also, we won’t deal with certain kinds of reconfiguration 

https://creativecommons.org/licenses/by-sa/4.0/
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that provide extended computational power for the array (in the sense of complexity-theory) that significantly 

speed up a number of global computations [6]. Given that the use of processor arrays can lead to high 

performance for many applications, numerous researchers have studied alternative reconfiguration schemes 

for such arrays [7]. Proposed architectures use various types/numbers of switches and place them differently 

within the array. Control schemes for effecting reconfiguration also differ (centralized, distributed, and 

hybrid), as do the complexities, and thus the speeds, of algorithms that decide on how to reconfigure the 

system. 

Key contributions of this paper are as follows. First, we show, through simple models, how 

distributing the switching mechanisms among the processors can lead to reliability improvement by making 

switch malfunctions no more serious than processor malfunctions, that is, removing the system’s hard core. 

Second, we introduce parametrized reliability models for both centralized switching architectures and 

distributed schemes, in a way that the sensitivity of the derived reliabilities with respect to chosen parameter 

values can be studied. Third, we demonstrate that the ability to derive tight reliability bounds is at least as 

important as envisaging ingenious reliability enhancement schemes. In other words, if reliability rises, but the 

reliability model does not reflect that rise, then we really do not have a guaranteed reliability improvement. 

Fourth, we show that the choice among multiple candidate systems with respect to highest reliability isn’t a 

straightforward task, given uncertainties in reliability values reflected in loose or tight bounds. 

 

 

2. RECONFIGURABLE 2D ARRAYS 

We will use a small 5  5 array of processors, with one spare row and one spare column, to illustrate 

the advantages of distributed switching over a centralized scheme. This arrangement leads to a 6  6 host 

array. From specific results for this small array, we establish general results by demonstrating that the 

advantage grows when we expand the array-size or increase the redundant resources, that is, use more spare 

rows/columns. More work remains to be done on quantifying the added advantages with size and 

redundancy, which remain qualitative in this paper. 

An example array is depicted in Figure 1, where tracks of embedded reconfiguration switches are 

placed between processor rows/columns. Four-port, 3-state switches appear as small circles in Figure 1. 

Figure 2 depicts the details and usage of these switches within the processor array of Figure 1. The actual 

method of reconfiguration and its capacity to tolerate malfunctions will be discussed in Sections 3 and 4. 

 

 

  
  

Figure 1. Two-dimensional 5  5 array, outfitted 

with embedded reconfiguration switches, a bottom-

edge spare row and a right-edge spare column 

Figure 2. Three-state reconfiguration switches and 

their use in the array of Figure 1 

 

 

Figure 1 represents only one way of how processor bypassing capability might be provided by 

reconfiguration switches for the purpose of diverting signals from their original destinations in the same row 

or column to alternate nodes, perhaps in other rows/columns. Upon the replacement of a node, either the new 

node taking over is initialized to the current state of the outgoing node to continue its work or else the entire 

computation is repeated from the beginning or from a previously-saved rollback point. Given that the 

complexity of initialization or restart is independent of the replacement and reconfiguration architecture, we 

will not discuss it further in this paper. 

Some alternate processor-array reconfiguration schemes use more than one track of reconfiguration 

switches; others employ switches that are more-complex than the one depicted in Figure 2. Figure 3 depicts a 

particular reconfiguration scheme using two switch tracks, embedded between processor rows/columns. The 

use of more switches or ones with higher complexity presents a reliability tradeoff to the designer, which 

isn’t easy to quantify in general. One reason is that potential benefits of greater flexibility in reconfiguration 

may be offset by the higher failure rates of more-numerous or more-complex switches. 
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Figure 3. Two-dimensional array, outfitted with 3-state reconfiguration switches, lined up on two tracks in 

the gaps between processor rows/columns  

 

 

In this paper, we limit our discussion to only one track of switches between array rows and columns. 

Furthermore, we will focus on identical switches, to simplify reliability models and VLSI realization. 

However, our switches can be arbitrarily complex, given that, in our reliability model, the failure rate of a 

switch is an independent parameter unrelated to those of other components. With one spare row and one 

spare column added to an n  n array, the redundancy factor for nodes is (2n + 1)/n2 = O(1/n). Increasing the 

number of spare rows and spare columns to k leads to the redundancy factor (2kn + k2)/n2 = O(k/n). In either 

case, the redundancy factor is relatively low. 

 

 

3. RECONFIGURATION WITH CENTRALIZED CONTROL 

Consider embedding a 5  5 guest array within the 6  6 host array of Figure 1. In the beginning, the 

active nodes are within the 5 rows at the top and the 5 columns on the left. As nodes malfunction, the 

configuration undergoes changes. Figure 4 depicts an array after reconfiguration, with the assumption that, in 

addition to switches that re-route signals, the array is equipped with a separate mechanism for bypassing a 

node within the row/column where it is located. 

Intuitively, re-routing of signals is accomplished by shifting rows downward (in the direction of the 

spare row) and shifting columns rightward (in the direction of the spare column), to compensate for 

unavailable row/column nodes. We offer no discussion of reconfiguration algorithms (see [8], for example). 

It suffices for our purposes in this paper to note that reconfiguration allows the guaranteed tolerance of up to 

two malfunctioning nodes. In other words, there exist certain patterns of three unavailable nodes that defeat 

this particular scheme’s reconfiguration capability [4]. 

Two schemes can be envisaged for the operational control of the reconfiguration switches. In the 

first scheme, switches may be controlled by a centrally-located unit. Disadvantages of centralization include 

the control mechanism constituting a single point of failure, requirement for long wires to connect the control 

unit to all the switches, and excessive delay in uploading the configuration information upon a node 

replacement. In the second scheme, switches are paired with nearby nodes, which controls them. One 

drawback of distribution is that a malfunctioning node may not be able to properly control the switch(es) 

assigned to it, making other processing resources or certain array configurations inaccessible; this would 

reduce system reliability and increase the effort needed to model all pertinent scenarios. 

Let’s assess the reliability of the array in Figures 1 and 4, using a simple combinatorial model. We 

lump the switching mechanism into a hard core and consider the collection of nodes as a 34-out-of-36 

system; recall that our scheme guarantees the tolerance of up to 2 bad nodes. Denoting the node failure rate 

by , the switch failure rate by , and noting that there are 60 embedded switches within the 6  6 array: 

 

Node reliability =  𝑟 =  𝑒–λ𝑡 (1) 

 

Switching reliability =  𝑒–(60σ)𝑡   (2) 

 

Overall reliability =  𝑒–(60σ)𝑡 𝑅34out−of−36(𝑟) (3) 

 

where Rk-out-of-n(r) is the k-out-of-n reliability for modules having identical reliability r. Simplifying: 

 

𝑅34−𝑜𝑢𝑡−𝑜𝑓−36(𝑟) =  𝑟36  +  36𝑟35(1 − r) + (36 ×
35

2
)𝑟34(1 − 𝑟)2 = 𝑟34[𝑟2 + 36𝑟(1 − 𝑟) +

630(1 − 𝑟)2] = 𝑟34[595𝑟2 − 1224𝑟 + 630] = 𝑟34[1 + (1 − 𝑟)(629 − 595𝑟) (4) 
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Substituting (4) into (3) and plotting the system reliability for different switch complexities, 

reflected in the ratio  = /, leads to Figure 5. For processors with typical complexities,  is likely to be 

near the lower end of the interval of considered values [0.001, 0.1], whereas for bare-bone PEs used in some 

arrays,  may approach, but likely not get very close to, the higher end. 

Unreliability curves in Figure 5 have expected shapes. When t is small, switching is the main 

source of unreliability, given the extremely high reliability of the processing part, as a 34-out-of-36 system. 

This observation explains the significant differences between reliabilities for the three cases with varying 

switch complexities. For large values of t, multiple node malfunctions that exceed the system’s tolerance 

limit dominate, making switching differences much less relevant. 

 

 

  

  

Figure 4. Salvaging a healthy 5  5 array from the 6 

 6 array of Figure 1, which is injured 

Figure 5. Reliability plots for a 2D reconfigurable 

array with centralized switching as a function of t, 

with variations in the parameter  = / 

 

 

4. RECONFIGURATION WITH DISTRIBUTED CONTROL 

We now shift our focus to a switching scheme in which system configuration is dictated by good 

processors, through setting the states of their own internal switches. Malfunctioning processors become 

irrelevant via their outputs not being considered by good processors. The scheme works, as long as all good 

nodes know the identity of malfunctioning nodes. This isn’t an added burden, because such information is 

needed even in the centralized scheme. 

One can implement distributed switching in many different ways. For our comparisons to be fair, we 

choose a distributed scheme that offers the same reconfiguration capability as the centralized scheme of 

Figures 1 and 2. Let’s consider modules having two built-in 3-input multiplexers (muxes) which allow them 

choose their east and north neighbors from among three candidate nodes. Consider, for example, that a 

processor’s north neighbor can one of three nodes in the preceding row : The node directly above, plus those 

before and after it in the same row. This is the same as the capability provided by the scheme in Figures 1 

and 2, assuming a single spare row and a single spare column. 

In this scheme, each node, with its built-in switches, becomes a little bit more complex, which we 

model by increasing the node failure rate from  to  +  ( is the failure rate of the original switches of 

Figure 2 and  is a new parameter reflecting the distribution overhead, that is, modeling the fact that switches 

become a bit more complex when we distribute them among the nodes). Reliability equations now become: 

 

Node reliability =  𝑟 = 𝑒– (λ+ασ)𝑡 (5) 

 

Overall reliability =  𝑅34−out−of−36(𝑟′) (6) 

 

We can consider  = 2 as a reasonably pessimistic value in our running numerical example: The 

centralized scheme of Figure 1 includes 60/36  1.67 switches per node, each 3-state switch realizable with 

two 2-to-1 muxes. As depicted in Figure 6, two 3-input muxes are needed for each node in the distributed 

scheme. Figure 7 depicts the unreliabilities of our example array as  assumes the values in {0.001, 

0.01, 0.1}. Again, the results are as expected. Reconfiguration switches and processing nodes are merged in 

the distributed scheme, with successful reconfiguration requiring only that 34 of the 36 nodes be healthy. The 

proper functioning of the switching mechanism is no longer more critical than the health of processors. Put 

another way, we have eliminated the system’s single point of failure. 
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One may worry about the impact of choosing  = 2 on the validity of results. Table 1 shows the 

outcome of a sensitivity analysis on the value of , by considering different values for the parameter that 

represent negligible overhead ( = 1) and more significant overhead ( = 3). These extreme values of  serve 

to confirm that reliability values show little change when adjusting the value of . 

 

 

 
 

  

Figure 6. Use of modules with internal switching 

capabilities in the form of muxes 

Figure 7. Reliability plots for a 2D reconfigurable 

array with distributed switching as a function of t, 

with variations in the parameter  = / 

 

 

Table 1. Demonstrating that reliability isn’t sensitive to variations in 
lt  0.0001 0.0010 0.0100 0.1000 

R(a = 1) 1.000,000 0.999,993 0.994,343 0.314,752 

R(a = 2) 1.000,000 0.999,993 0.994,189 0.308,424 
R(a = 3) 1.000,000 0.999,992 0.994,031 0.302,192 

 

 

5. COMPARATIVE RELIABILITY EVALUATION 

Comparing Figures 5 and 7 reveal the advantages of distributed reconfiguration switching with 

respect to reliability. The advantages are greatest when the value of t is small, that is, the expected range of 

operation for high-reliability systems. In order to highlight the reliability differences for a reasonable case of 

switch complexity ( = 0.01), we superimpose the unreliability curves of Figures 5 and 7 to create Figure 8. 

Please refer to Section 7 for an explanation of the dotted gray curve. 

Figure 8 tells us that reliability differences disappear as t approaches 1, making centralized and 

distributed switching indistinguishable with regard to reliability. Note, however, that the region near t = 1 is 

practically useless, given the extremely low reliability values. A natural question at this point is whether the 

results pertaining to a specific, fairly small array utilizing a specific switching scheme, carry more-general 

significance. The three claims, with informal justifications, that follow suggest that the results are indeed 

more general. 

Claim 1: Increasing the size of the array, while keeping the same switching scheme and, thus, tolerance level, 

leads to a growth of the advantage of distributed switching over centralized switching. 

Proof outline for Claim 1: Take the reliability-lower-bounds expressions for an h  h array, and consider the 

next-larger, (h + 1)  (h + 1), array. Prove that the reliability lower-bound deterioration for the larger array is 

less for distributed switching compared with centralized switching. Intuitively, the centralized switch 

complexity growth directly affects the reliability, while the increase in module complexity as a result of 

distribution is moderated by passing through the k-out-of-n filter. 

Claim 2: Adding spare rows or spare columns causes the advantage of distributed switching over centralized 

switching to grow, all else being kept the same. 

Proof outline for Claim 2: With 2 spare rows and 2 spare columns, the reliability function changes from (n2 + 

2n – 1)-out-of-(n2 + 2n + 1) to (n2 + 2n – 3)-out-of-(n2 + 2n +1), because of the tolerance level improving to 4 

processor malfunctions. Here, too, the improvement in the k-out-on-n function value dominates the 

improvement in the centralized scheme, with its increased switch complexity.  

Claim 3: Using more-complex switches to improve the malfunction tolerance level causes the advantage of 

distributed switching over centralized switching to grow. 

Proof outline for Claim 3: The justification is quite similar to that of Claim 2. Other than the filtering effect 

of the k-out-of-n function, distributing the more-complex switching capabilities is beneficial. 
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Figure 8. Comparative unreliability plots as a function of t, assuming  = 0.01 and  = 2 
 

 

6. THE NOTIONS OF MODELABILITY AND RELIABILITY INVERSION 

In reliability engineering, the exact reliability of a system is unknowable. If we could observe 

system failures by running hundreds of identical copies of a system for decades, we could derive the actual 

reliability with high confidence. We need a large number of copies and extended running times because 

failure events are extremely rare in practical, highly-reliable systems, so extensive data collection is needed 

for results to be statistically valid. A practical alternative is to use an analytic or simulation model, involving 

simple, pessimistic assumptions about subsystems and their interactions, to derive a reliability lower bound. 

The latter approach becomes mandatory for evaluating a system at design time, when a physical 

implementation isn’t available. The need for experimentation still exists, even when using models. 

Parameters for such model are estimated, and models are corrected/tuned, with help from experimental 

observations. 

The nature of modelability is similar to (design for) analyzability, or “design for analysis” [9], a 

notion along the same lines as design for manufacturing (manufacturability). For electronic circuits, design 

for packageability [10] is rather similar. Analyzability can be ensured by insisting that certain design 

constraints be honored so as to allow the use of simpler tools for analysis. The notions just listed constrain 

the design process, but, surprisingly, lead to cost reduction and faster development. Modelability makes it 

easier to derive tighter lower bounds for reliability. Figure 9 compares Systems A and B with respect to their 

(unknowable) reliabilities and the corresponding model-based lower bounds, revealing System B to be more 

modelable than System A. Even though modelability is a qualitative notion at this juncture, it can certainly be 

quantified with further work (which is in the planning stage), in the same way that testability, serviceability, 

and several other “ilities” were quantified, after starting out as qualitative notions. 

To recap, obtaining guaranteed lower bounds on a system’s survival probability requires that 

reliability analysis be based on worst-case assumptions. Reliability experts are aware of the desirability of 

tight lower-bounds, but sometimes system structure makes it difficult to derive tight bounds. Consider 

System B with (unknowable) actual reliability of 0.997 and a computed reliability lower bound of 0.995 for 

mission time t0. Similarly, System A with (unknowable) actual reliability of 0.999 has a computed reliability 

lower bound of 0.993 for the same mission time. Figure 9 depicts the situation above. Unknowable actual 

reliabilities force us to make decisions based on lower bounds, leading to the pronouncement that B is more 

reliable than A at t0. This condition is referred to as reliability inversion [11], in analogy to “priority 

inversion” in the scheduling of real-time tasks [12], which caused serious trouble during the 1997 Mars 

Pathfinder mission [13]. 

Paying greater attention to Figure 9, we see that each of the systems A and B is preferable to the 

other system for certain ranges of mission time. However, these nuances are hidden from us due to 

unknowable actual reliabilities. Computed reliability bounds proclaim System B as uniformly preferable to 

System A with regard to reliability. All of the results reported in this paper should be extensible to alternative 

reconfiguration architectures and algorithms proposed more recently [14-17]. 
 

 

 
 

Figure 9. True, but unknowable, reliability vs. pessimistically-derived lower bound 
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7. CONCLUSION 

An important conclusion of our work is that two properties tend to make processor arrays with 

distributed reconfiguration switching preferable to those with centralized switching: Inherently higher 

reliability and better modelability, the latter property allowing us to use simple combinatorial models to 

derive tight reliability lower bounds. The author has previously shown that, under certain unusual conditions, 

centralized switching can exhibit higher reliability (the dashed line in Figure 8), even though its 

pessimistically-derived reliability bound is lower. Future research must address several remaining problems, 

as pointed out in the preceding sections. First, Claims 1-3 of Section 5 show that certain changes in array 

configuration improve the system reliability. We shall aim to quantify these improvements, either by 

constructing expanded formal proofs or by deriving reliability formulas for different array configurations and 

redundancy factors. Second, we shall move in the direction of quantifying the modelability notion, thus 

making it usable for comparative assessment competing system designs or for producing design guidelines 

and methodologies. Third, we may look into extending our results to alternative reconfiguration architectures 

and algorithms proposed more recently, so as to produce results that enjoy broader applicability. 
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