
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 10, No. 1, March 2021, pp. 32~36

ISSN: 2089-4864, DOI: 10.11591/ijres.v10.i1.pp32-36 32

Journal homepage: http://ijres.iaescore.com

Systematising troubleshooting of disputes in network

Sowmya K. B., Thejaswini A.
Department Department of Electronics and Communication Engineering, R V College of Engineering Bengaluru,

Karnataka, India

Article Info ABSTRACT

Article history:

Received Jun 2, 2020

Revised Oct 29, 2020

Accepted Nov 27, 2020

 With the growing network size, virtualization everywhere, it is getting more

difficult to configure and manage the network devices. Software Defined

Networking (SDN) is a way to address these problems. Application Centric

Infrastructure (ACI) is the Cisco’s solution to SDN, with centralized

automation and policy-driven application profiles. If there is any bug in the

network or problem with the expected functionality of the network, ACI

cases are opened in the Technical Assistance Centre (TAC) for

troubleshooting the issue. Engineers currently troubleshoot ACI cases

manually by using Command Line Interface (CLI) and trace for different

events triggered by the policy pushes by logs generated at different stages of

the ACI and from different servers responsible for this, which indeed is a

very tedious, time consuming task and is prone to manual errors. This paper

describes a way to automate the entire ACI troubleshooting process with the

user-friendly GUI which can show the entire information needed for

troubleshooting by extracting relevant information at every layer. By making

use of FSM models the proposed solution can be extended to other areas

which involve log analysis using CLI to extract relevant information and is

not just limited to ACI.

Keywords:

Distributed management

information tree

Managed objects

Software defined networking

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sowmya. K. B

Department of Electronics and Communication Engineering

R V College of Engineering

Mysore Rd, RV Vidyaniketan, Post, Bengaluru, Karnataka 560059, India

Email: kb.sowmya@gmail.com

1. INTRODUCTION

The Software Defined Networking (SDN) is a networking approach that separates data plane and

control plane which enables the data plane devices to be directly programmable by the control plane and the

infrastructure below to be abstracted for network and application services. Application Centric infrastructure

(ACI) is SDN solution of Cisco. While troubleshooting or solving an ACI related case, Distributed

Management Environment (DME) logs are considered for audit. ACI is adopted in networking because it is

characterized by simplified automation by an application-driven policy model, real-time centralized

visibility, open software flexibility, scalable performance and multi-tenancy in hardware etc, but the

complexity involved in solving an ACI related case is reflected in the logs itself, which are usually the

outputs of Managed Objects (MOs) arranged systematically in files and folders. Assuming a problem started

at a time and is associated with the configuration made by the person who has configured the network, this

configuration that is pushed is not localized to just one device, instead it is pushed to all other nodes that

might be affected by the ACI which includes redundancy measures also. To exactly identify the problem

usually 4 different kind of files are considered: Access logs, Nginx, Policydistr, Policymgr which are

associated with ACI policy pushes. These 4 logs give us a description of how the config was distributed

https://creativecommons.org/licenses/by-sa/4.0/

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Systematising troubleshooting of disputes in network (Sowmya K. B.)

33

[1-4]. But each log is an output of different managed objects running asynchronously including the redundant

measures too. As the systems get more intelligent and complex, the outputs given by each process also gets

increasingly complex. Having less readable complex and inherently difficult logs is not only a problem for

customer alone, nstead increases traffic at TAC centers because even a minor problem may create

incomprehensible log output. From this project, device configuration pushes on ACI products can be

visualized with a GUI, without having to look for data in a Command Line Interfaces (CLI). The project is

built on dynamic roots with scalable and reliable methodologies like FSM and JSON representation, so that it

can be scaled further on stretching to other networking technologies other than ACI wherever log parsing and

visualization is done. The aim is to incorporate the project into app section of APIC GUI itself so that the

time involved in downloading and decrypting them can be narrowed down.

2. SOFTWARE DEFINED NETWORKING AND PERFORMANE OF ACI

2.1. Necessity and features of SDN

There is a necessity of connected devices with the growing technological demands. As a result,

networks and internet are expanding at the increasing rate. With such a huge network size, it is hard to

configure, control and manage network devices. Software Defined Networking (SDN) architecture provides a

solution to this by separating the control and data forwarding capabilities of networking devices. In

traditional network, these capabilities were vertically stacked on the devices and hence not giving enough

flexibility [5-8]. SDN not only helps in configuring devices by a software method, but also helps in the

maintenance and management of the network itself in case anything goes wrong with device or any faults

arise etc. since the whole control plane capabilities is vested in the hands of the centralized controller.

To facilitate this, it makes use of two types of Application Policy Interfaces (APIs) viz Southbound

APIs and Northbound APIs. The Southbound APIs are responsible for providing the instruction sets to the

functionality of forwarding devices. It also ensures smooth communication control plane devices and

forwarding devices by defining communication protocol between them, and hence are the important elements

in separating data plane and control plane capabilities of the devices. Whereas, the Northbound APIs are used

by the application developers for developing applications relevant to the network. In most of the cases,

northbound APIs program the devices responsible for forwarding by abstracting the instruction-set used by

southbound APIs, at a lower level [9-13]. Also, network hypervisors are responsible for layer III functionality

of the SDN by supporting various virtual machines to share a common hardware resource.

 2.2. Features of Application Centric Infrastructure

Combines the full mesh spine-and-leaf topology with finely tuned routing and several protocols that

allow network abstraction from physical infrastructure. This flexible and redundant network enables

grouping of hosts to apply communication policies that define the device the devices that can communicate

with each other. Even though ACI uses a completely different communication model from the outside

network, the entire ACI topology appears as a regular switch to the outside devices. At a very basic level,

ACI can be thought of as a Clos network of Nexus 9000 Series Switches with an Application Policy

Infrastructure Controller (APIC) management platform. In a Clos network, every lower tier switch is

connected to every upper tier switch, creating a redundant, high performance mesh where traffic is

distributed between links [14-18].

The APIC, or network management platform, provides customers with a single place from which to

manage the network. Like the Unified Computing System (UCS), the APIC uses abstraction to ease the

configuration burden, while pushing down profiles that are tailored to applications that will be instantiated on

the individual switches. In doing so, ACI solution becomes much more than a Clos network of Nexus 9000

Series Switches with the management platform [19-21]. Instead, it becomes a fully integrated, open system.

ACI supports the same access tools that are available on individual Nexus Series Switches with a

management platform. Instead, it becomes a fully integrated, open system.

3. MANAGED OBJECTS AND DISTRIBUTED MANAGED INFORMATION TREE FOR

TROUBLESHOOTING

Classes are used to abstract and modeling everything include policy, resource, topology, event and

faults in ACI. Each object is an instance of the certain class that inherits the properties and method. Together

all objects store the configuration and run-time data of the ACI fabric. The following gives the description of

how managed objects (MOs) are organized. Everything is an object. Objects are hierarchically organized.

Distributed Managed Information Tree (dMIT) contains comprehensive system information like discovered

components, system configuration and operational status including statistics and faults.

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 10, No. 1, March 2021: 32 – 36

34

A single logical dMIT presented to user through REST interface on any APIC. Internally dMIT is

split into various services and shards in various APICs. In APIC MIT, everything is fully defined as an

object. These definitions include the entity itself, and a full description of the entity, including its

configuration, state, run-time data, description, reference objects, and lifecycle position. The tree is

distributed across the entire APIC cluster, so it may be referred to as the DMIT. The objects are organized in

a hierarchical way, creating logical object containers. Every object has a parent, except the top object, root,

which is the top of the tree. Objects include a class, which describes the type of object such as a port, network

path, or Packages identify the functional areas to which the objects belong.

The DMIT also contains comprehensive system information about discovered components, system

configuration, and operational status including statistics and faults. The unified RESTful API automatically

delegates a request to the corresponding components in the MIT. Every component and attribute are

represented as an object in the Cisco APIC MIT and every object can be manipulated via REST.

4. RESULTS AND INFERENCE

Depending on the affected node, timestamp of the event, changeset etc. the steps involved in

automating the troubleshooting process varies. Results for the changeset “conversion from proxy to flood”

follows the steps of finding timestamp from aaaModLR server, pull out the POST URL from the JSON file,

collect message ID, transaction ID etc. where each data extraction from the files is dependent on the

previously collected data. Hence, a Finite State Machine (FSM) is built where these procedures can be

defined depending on the previous triggers.

These FSMs play an important role in automating the entire procedure. Figure 1. shows how a

typical FSM looks like for the data extraction from Nginx server, where the inputs are HTTP method,

timestamp and the affected node, the output is the Message ID which will be later used for the Policy

distributer server. These FSMs in the form of a JSON file can be directly imported to the python script

responsible for log parsing. To create the above-mentioned FSM and the FSMs related to other configuration

pushes, a web UI is developed, where one can define the FSM states, add events and add relevant call backs

to define the set of operations which have to follow one another on trigger [22-25].

Figure 1. Data extraction from nginx server

Figure 2. shows the screenshot of the web UI to create the FSM easily. The output of this page will

be a JSON file which the user can download directly and use them in the python scripts which has the DMIT

and managed objects handled efficiently. Once the DMIT is built, it is integrated with data from different

servers like Nginx, AAA, Message broker, ConfigConfMO, Intra Fabric Messager (IFM) etc. of the data

center in the ACI fabric.

Figure 2. Screenshot of the web UI to create the FSM

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Systematising troubleshooting of disputes in network (Sowmya K. B.)

35

The required information at different stages of the ACI policy push configuration be viewed easily

as the data flow path is clearly defined and relevant information and keywords are displayed clearly. While

traditionally, engineers used to grep for the required data across lots of showtech files and folders with the

help of Command Line Interface (CLI). As it is hovered over every node in the GUI, relevant information at

that stage is displayed. The suitable JSON files corresponding that stage can also be viewed by zooming into

that node of the GUI.

From the above-mentioned results, it can be inferred that the entire ACI troubleshooting process can

be automated with the user-friendly GUI which can show the entire information needed for troubleshooting

by extracting relevant information at every layer of the ACI. This information needed is not a general one

which is common to all the cases, hence this issue is addressed by making use of finite state machines which

considers all the possible cases and the data flow path is defined for each of them. By making use of FSM

models the proposed solution can be extended to other areas which involve log analysis using CLI to extract

relevant information and is not just limited to ACI. Different FSMs can be designed to suite different

applications and finally a JSON file will be generated which has all the relevant information in the form of a

dictionary. Finally, all the required data can be viewed in a readable format by uploading this JSON file to

the GUI other than doing it manually. Some notable features of this automation tool are to Reduce time

complexity while increasing value addition to the ACI team Scalable to other technologies.

5. CONCLUSION

ACI architecture ensures agility, programmability, better performance and reduced complexity. This

is based on the application centric model where application requirements decide the network not the other

way around. As is a result it is the future to all the networking topologies as it doesn’t include configuration

of individual physical devices explicitly, rather are automatically done whenever new policy push is done to

the application policy infrastructure controller, which saves a great amount of time and eradicates the errors

which may occur through manual configuration. This work was an attempt to save the time of engineers even

more during the troubleshooting process of the issues raised due to the configurational changes or policy

pushes made to the ACI fabric. Generally solving an ACI case approximately takes two weeks to grep

through all the logs for audit. By using the above described automation tool, this process is going get faster

and more reliable.

REFERENCES
[1] A. Pras, J. Schonwalder, M. Burgess, O. Festor, G. M. Perez, R. Stadler, and B. Stiller, “Key Research Challenges in

Network Management,” IEEE Communication Magazine, vol. 45, no. 10, pp. 104-110, 2007.

[2] B. Jennings, S. V. D. Meer, S. Balasubramaniam, D. Botvich, M. O Foghlu, and W. Donnelly, “Towards Autonomic

Management of Communications Networks,” IEEE Communication Magazine, vol. 45, no. 10, pp. 112-121, 2007.

[3] S. Adams, ITIL V3 Foundation Handbook, The Stationery Office, 2009.

[4] D. Opeenheimer, A. Ganapathi, and A. Petterson, “Why do internet services fail and what can be done about it?” in

USITS'03: Proceedings of the 4th USENIX Symposium on Internet Technologies and Systems, Seattle, WA, USA,

vol. 67, pp. 1-16, Mar. 2003.

[5] J. Strassner, “How policy empowers business-driven device management,” in Third International Workshop on

Policies for Distributed Systems and Networks, 2002, pp. 214-217.

[6] Z. Kerravala, As the value of enterprise networks escalates, so does the need for configuration management, The

Yankee Group, Jan. 2004.

[7] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky and S. Uhlig, “Software-Defined

Networking: A Comprehensive Survey,” in Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2014.

[8] N. El Moussaid, A. Toumanari and M. El Azhari, “Security analysis as software-defined security for SDN

environment,” 2017 Fourth International Conference on Software Defined Systems (SDS), Valencia, 2017, pp. 87-

92, doi: 10.1109/SDS.2017.7939146.

[9] O. Michel and E. Keller, “SDN in wide-area networks: A survey,” 2017 Fourth International Conference on

Software Defined Systems (SDS), Valencia, 2017, pp. 37-42, doi: 10.1109/SDS.2017.7939138.

[10] R. L. Smeliansky, “SDN for network security,” in 2014 International Science and Technology Conference (Modern

Networking Technologies) (MoNeTeC), Moscow, 2014, pp. 1-5, doi: 10.1109/MoNeTeC.2014.6995602.

[11] D. B. Hoang and M. Pham, “On software-defined networking and the design of SDN controllers,” in 2015 6th

International Conference on the Network of the Future (NOF), Montreal, QC, 2015, pp. 1-3, doi:

10.1109/NOF.2015.7333307.

[12] D. R. Garrison and M. F. Cleveland-Innes, “Foundations of distance education,” In M. F. Cleveland-Innes and D.R.

Garrison, Eds., New York, NY: Routledge, An introduction to distance education: Understanding teaching and

learning in a new era, 2010, pp. 13-25.

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst, Vol. 10, No. 1, March 2021: 32 – 36

36

[13] D. R. Garrison and H. Kanuka, “Changing distance education and changing organizational issues,” New York, NY:

Routledge, In W. J. Bramble and S. Panda, Eds., Economics of distance and online learning: Theory, practice, and

research, 2008, pp. 13-25.

[14] P. Goodyear, S. Banks, V. Hodgson, and D. McConnell, “Research on networked learning: An overview

Dordrecht,” Netherland: Kluwer Academic Publishers, Advances in Research on Networked Learning, 2004,

pp. 1-9.

[15] D. Harris, “Transforming distance education: In whose interests?” In T. Evans, M. Haughey and D. Murphy, Eds.,

International handbook of distance education Bingley, UK: Emerald, 2008, pp. 417-432.

[16] B. Holmberg, "A theory of teaching-learning conversations,” In M. G. Moore, Ed., Handbook of distance education

2rd ed., Mahwah, NJ: Erlbaum, 2007, pp. 69-75.

[17] P. Ice, "The future of learning technologies: Transformational developments,” In M. F. Cleveland-Innes and D.R.

Garrison, Eds., An introduction to distance education: Understanding teaching and learning in a new era, 2010, pp.

137-164.

[18] C. Jones, Networked learning: An educational paradigm for the age of digital networks, Verlag, Switzerland:

Springer, 2015.

[19] K. Swan, “Teaching and learning in post-industrial distance education,” In M. F. Cleveland-Innes and D. R.

Garrison, Eds., An introduction to distance education: Routledge, 2010, pp. 108-134.

[20] H. Kanuka C. Brooks, “Distance education in a post-Fordist time: Negotiating difference,” In M. F. Cleveland-Innes

and D. R. Garrison Eds., An introduction to distance education: Understanding teaching and learning in a new era,

2010, pp. 69-90.

[21] P. Trowler, “Wicked issues in situating theory in close-up research,” Higher Education Research & Development,

vol. 31, no. 3, pp. 273-284, 2012.

[22] A. Woodley, “But does it work? Evaluation theories and approaches in distance education,” In T. Evans, M.

Haughey and D. Murphy Eds., International handbook of distance education, 2008, pp. 585-608.

[23] T. Ryberg and C. Sinclair, “The relationships between policy, boundaries and research in networked learning,” In T.

Research, boundaries, and policy in networked learning, 2016, pp. 1-20.

[24] S. Guri-Rosenblit, “Distance education in the digital age: common misconceptions and challenging tasks,” Journal

of Distance Education, vol. 23, no. 2, pp. 105-122, 2009.

[25] S. Guri-Rosenblit, Digital technologies in higher education: Sweeping expectations and actual effects, Nova Science

Publishers, Inc., 2011.

BIOGRAPHIES OF AUTHORS

Ms. Sowmya K B received the B. E degree in Electronics and Communication Engineering

from the Vivekananda College of Engineering and Technology, Puttur, India, in 2006, M.

Tech degree in Electronics from the Sir. M. Visveswaraya Institute of Technology,

Bengaluru, India, in 2012, bagging rank from VTU, Belagavi. She was working as

Assistant Professor in PA College of Engineering, Mangaluru, India for Nine years.

Currently she is working as Assistant Professor in R V College of Engineering, Bengaluru,

India. Her research interests include VLSI and Signal Processing, Image processing, Low

power Architectures and VLSI Design. She has contributed many National and

International journals to various reputed journals and conference.

Ms. Thejaswini A is doing her Bachelor of Engineering in Electronics and Communication

Engineering Department, RV College of Engineering, Bengaluru, India.

