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The purpose of this paper is to accelate the computing speed of Empirical
Mode Decomposition (EMD) based on multi-core embedded systems for
robust speech recognition. A reconfigurable chip, Field Programmable Gate
Array (FPGA), is used for the implementation of the designed system. This
paper applies EMD to discompose some noised speech signals into several
Intrinsic Mode Functions (IMFs). These IMFs will be combined to recover
the original speech by multiplying their corresponding weights which were
trained by Genetic Algorithms (GA). After applying Empirical Mode
Decomposition (EMD), we obtain a cleaner speech for recognition. Due to
the complexity of the computation of the EMD, a dual-core architecture of
embedded system on FPGA is proposed to accelerate the computing speed of
EMD for robust speech recognition. This will enhance the efficiency of
embedded speech recognition system.
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1. INTRODUCTION

It has been a long time for the development of speech recognition. However, speech recognition for
the speech subjects to environmental noise is still an open problem. The most important problem in the robust
speech recognition is the mismatch problem arising from the mismatch of the training and application
environment due to the noises. Consequently, a speech sensor with the ability of noises cancellation is
important for the realization of robust speech recognition. The methods for handling the mismatch problem
can be classified into two categories: feature-based method and model-based method. Feature-based methods
focus on the feature parameters rather than on model parameters for speech or noise [1-7]. Model-based
methods exploit prior knowledge about the distributions of speech and noise for speech feature enhancement
[8-13]. In this paper, the noised speech signals will be processed by eliminating the noise components before
capturing the features through Mel-Frequency Cepstrum Coefficient (MFCC). Hence, the speech features
become cleaner when they are fed into the speech recognition platform for recognition. A better recognition
rate for the noised speech signal can then be obtained.

This study applies the EMD to decompose noised speech signals into the components including
speech signals or noises. EMD is first proposed by Prof. Huang to combine the Hilbert Transform (HT) to
analyze the nonlinear and non-stationary time series. The combination of EMD and HT is then called Hilbert
Huang Transform (HHT) [14]. The EMD was applied initially on the signal analysis of in the area of
geoscience, strength analysis of material structure and the trend analysis of the stock market, etc. Hence, it is
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of the goal of this paper to find the weights corresponding to different IMFs and combines these weighted
IMFs to recover the original speech signals. The weights for each IMF are trained by GA to find an optimal
combination of IMFs. However, since EMD process will cost a lot of computation time, another goal of this
paper is to implement a dual-cores architecture on an FPGA to accelerate the operation of EMD.

2. EMPIRICAL MODE DECOMPOSITION (EMD)
In this section, the procedure for performing EMD is introduced. Besides, a strategy based on GA
and EMD to the robust speech recognition is proposed.

2.1. Procedure of EMD operations

The main step to perform EMD operation is to divide a speech signal into several intrinsic mode
functions (IMFs). The condition for the data series to be an IMF can be described as follows [14] .Let the
original signal is X (t) and Temp(t) = X (t) .

Step 1: Find the upper envelop U (t) and lower envelop L(t) of the signal Temp(t). Calculate the
mean of the two envelops m(t) = [U (t) + L(t)]/ 2 . The component of Temp(t) is obtained by the equation

h(t) = Temp(t) — m(t). @

Step 2: Check whether the signal h(t) satisfies the conditions of IMF or not. If it is, then the first
IMF is obtained as imf1(t) = h(t) and go to next step, else assign the signal h(t) as Temp(t) and go to Step 1
Step 3: Calculate the residue r1(t) as

r1(t) = Temp(t) — imf1(t) (2)

Assign the signal r1(t) as X (t) and repeat Step 1 and Step 2 to find imfy (t)
Step 4: Repeat Step 3 to find the subsequent IMFs as follows.

Fn () = r-1(t) — imfn () , n=2,3,4, .... 3)

This step is end when the signal rp (t) is constant or a monotone function. After the EMD procedure
Step 1~ Step 4 is finished, the following decomposition of X (t) is obtained.

X() = Y "=gimfi (1) + rn (0).

2.2. Combining GA with EMD for noise separation

In order to illustrate the effect of noises on IMFs, the EMD for a clean speech signal is first
performed and the obtained IMFs are shown in Figure 1 [15]. In this figure, the leading five IMFs are shown,
since the speech signal almost totally exists in these IMFs. Beyond these IMFs, it is hardly to find any speech
signal components. It can be seen that the later the order of IMF is the lower the frequencies is. In order to
examine that which IMF the noise or the speech signal will exist, a white noise is added into the clean speech
signal. And then the IMFs, obtained from the EMD for a noised speech signal, are shown in Figure 2 [15].
Based on Figure 2, it is easy to find that the noise almost exists in the 1st IMF. Moreover, comparing Figure
1 to Figure 2, we can find that the 2nd and 3rd IMFs of the noised speech are very similar to the
corresponding IMFs of the clean speech. So, we conclude that the speech signal mostly exists in the 2nd and
3rd IMFs. However, some experiments reveal that there are still some components of speech exist in later
IMFs than 2nd and 3rd IMFs. Indeed, from a numerical experimental results from my previous work shown
in Table 1 [15], it can be seen that the speech components exists in the later IMFs more evidently when the
magnitude of the added noise becomes larger. This experiment reveals that the previous works on EMD for
speech signal, which used only 2nd and 3rd IMFs to recover the original speech signal will lose some speech
components in later IMFs. Thus, this paper asserts that the later IMFs should be included by multiplying
some weights to recover the original signal. Actually, the weights for the each IMFs to recover the original
speech are variant for different SNR of a noised speech. Consequently, this paper proposed a strategy which
uses GA to train the optimal weighting of IMFs to recover the speech signal subject to various strength of
noise. In the training phase of the weights for each IMFs, the chromosomes in GA are defined as Chrm = [w:
W2 ... Wn] and the recovered speech is then expressed as:
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Xen (®)= D "= wi -imf (t). (4)

The fitness function for the GA used in this study is defined as follows.
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Figure 1. IMFs for clean speech signal [15] Figure 2. IMFs for noised speech signal [15]

Table 1. Speech recognition rates of noised speech signals for various SNR versus various
IMFs combinations

NR(dB)
Recog. Rates @ 25 20 15 10 5 0

Comb of IMFs

without EMD 900 753 686 613 403 153 8.0
imfy 826 523 386 246 173 120 10.0
imf2 926 886 783 630 560 426 280
imfs 640 533 440 346 260 193 14.6
imfi+imf2 96.0 920 80.6 613 40.0 220 11.7
imf2i+mfs 946 860 806 673 566 513 36.6
imf2 +..+imfs 933 886 793 690 566 526 373
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3. IMPLEMENT THE DESIGNED SPEECH RECOGNITION SYSTEM ON FPGA

In this paper, the developed noises cancellation method for speech sensors and the speech
recognition system was implemented on a FPGA-based SOC embedded platform. The block diagram of the
SOC architecture used in this study is shown in Figure 3. An Altera develop board DE2-70 in which a
Cyclone FPGA chip is included is used for this experiment. The constraint on the development board for this
experiment is that there is no operation system in the FPGA chip, only single-threaded procedure is available.
This will slow down the computation speed of the speech recognition systems. On the board a push button is
used for the control of the starting and ending of the voice record and a Toggle switch is used for controlling
the sampling rate of AUDIO codec. The EDA tools Quartus 11, SOPC Builder and Nios Il are used to develop
and simulate the system. In the hardware implementation, SRAM and Flash RAM are used for the storage of
source code and testing signal, respectively. The 12C Protocol is used to control the register of the platform.
Besides, AUDIO Controller is used to receive speech data and SEG7 is used for the display of recognition
results. The standard control IPs which are supported by SOC Builder are adopted for driving the necessary
elements SDRAM, SRAM and LCD. The push button and Toggle switch are connected by the built-in P10.
Moreover, SEG7 Controller and AUDIO Controller are user-defined. In the experiment, PLL is adjusted to
have a frequency of 100Mhz and a delay of 3ns, and then support the system’s clock

The specs of the FPGA is as follows.

- Cyclone 11 2C70 FPGA
- 70,000 LEs
- 2-Mbyte SSRAM
- Two 32-Mbyte SDRAM
- 8-Mbyte Flash memory
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Figure 3. Block diagram of the SOC system in this experiment

3.1. Dual Core Realization on FPGA
This paper used two Nios II/f fast cores with 100MHz clock for each CPU to implement the
proposed system. The specs of NIOS Il can be seen in Figure 4.
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Figure 4. The specs of NIOS 1I/f ina FPGA
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There are two 32-Mbyte SDRAMs in the embedded platform used in this experiment. The test
speeches and all the parameters for speech recognition, that is the parameters for the classifier (HMM here),
the EMD and the GA, were stored in SDRAM 1 while the sharing data which are shared for the two CPUs
were stored in SDRAM 2. The memory allocation of SDRAM 1 for the booting program of the two CPUs,
called CPU1 and CPU2, is depicted in Figure 5. Moreover, the memory allocation of SDRAM for the
parameters, functions and data which are necessary for the operations of CPU1 and CPU2 is depicted in
Figure 6. The details for each segment are listed as follows:

—  .text— the execution codes

—  .rodata— the read-only data

—  .rwdata— variables and pointers

—  .heap— dynamic allocation of memory

—  .stack—parameters of function call and data for temporary variables

The shared memory of the two CPUs is managed by a software MUTEX CORE which is supported
by SOPC TOOLS of Altera Company.

0x0001FFFF stack
heap
. rwilaia
Program Data CPU 2 rodata CPU2
Jext
. Ox0001002(
8:8882)222% Boot Loader 000010000 LR
heap
) 1 . rwdata
Program Data CPU 1 T CPU I
Boot Loader 0x00000020 Aext
0x00000000 0x0000000¢
Figure 5. Memory allocation for the booting Figure 6. Memory allocation for the parameters,
programs of the two CPUs functions and data of the two CPUs

The parallel process of EMD by the two CPUs is fulfilled by saparating a speech signal into two
parts. The first part and the second part are sent to CPUL1 and CPU2 for performing the EMD process,
respectively. After the EMD process for the two parts are completed, CPU1 accesses the share memory for
the EMD results and then performs the speech recognition by the algprithm implemented in FPGA. The
cooperation of the two CPUs is depicted in Figure 7.

Memory 1(16MB)
o y —
{ CPU 1 UART 1 @ umn.Q

'—4 Timer 1

| Share Memory (32MB)

CPU 2 }——{ Memory 2(16MB)
—{ Timer 2

Figure 7. The cooperation of dual cores

4. EXPERIMENTAL RESULTS

Ten speeches 0~9 are recorded with 8kHz, 16 bits length and monotone. For GA, each generation
has 16 chromosomes, the survival rate for each chromosome is 0.5, and the mutation rate for each gene is
0.05. Besides, the chromosomes in parent generation are randomly crossover to generate the chromosomes of
the next generation. The tables, Table 2 and Table 3 reveal the time cost for the EMD and speech recognition
by using single core and dual core, respectively. Moreover, the word-by-word comparisons of computation
time by using single-core architecture and dual-cores architecture for EMD and speech recognition are
depicted in Figure 8 and Figure 9, respectively. It is obviously that the time cost by using dual cores is much
less than that by using single core. The percentages for time saving for each speech are listed in Table 4.
According to Table 4, the percentage for saving time by using dual core for EMD process are in the range
from 23.55% to 49.85%, and that for recognition are in the range from 18.22% to 45.20%. The average
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saving percentage for EMD is 41.39% and is 35.88% for recognition. This shows that a dual-cores
architecture can speed up the EMD process and speech recognition.

8

S
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0

Table 2. Time costs for EMD process and speech recognition by using single core

Speeches  EMD (sec.)

Time cost (average)
Recognition (sec)

Recognition Rate

0 30.80 32.97 96%
1 50.78 53.22 85%
2 34.97 36.85 98%
3 12.23 13.65 100%
4 33.34 35.23 100%
5 28.69 31.18 98%
6 18.77 20.50 96%
7 28.81 30.65 92%
8 18.84 20.52 86%
9 20.77 22.65 98%
Average 27.80 29.74 94.9%

Table 3. Time costs for EMD process and speech recognition by using dual core

Time cost (average)

Speeches EDM (sec.) Recognition Recognition Rate
0 17.46 20.40 96%
1 26.35 29.71 81%
2 17.98 20.59 98%
3 8.60 10.59 98%
4 16.72 19.30 98%
5 15.94 19.34 98%
6 14.35 16.77 94%
7 15.43 17.99 98%
8 11.42 13.72 88%
9 12.35 14.93 96%

Average 15.66 18.33 94.5%

® single sec. 60
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Speeches

core

® dual
cores

Figure 8. Comparison of computation time for EMD using

single core and dual cores
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Figure 9. Comparison of computation time for
speech recognition using single core and dual cores

Table 4. Percentage for saving time by using dual core for EMD process and recognition

Speeches

Saving Percentage for

Saving Percentage for

OCOO~NOUIWNEO

Average

43.32%
48.11%
48.59%
29.65%
49.85%
44.43%
23.55%
46.44%
39.39%
40.53%
41.39%

38.12%
44.17%
44.13%
22.41%
45.20%
37.98%
18.22%
41.31%
33.13%
34.12%
35.88%
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5. CONCLUSION

The dual core architecture for accelerating the computation time of EMD is proposed in this paper.
The EMD combination with GA is used here for noise separation from a contaminated speech. Ten speeches
are recorded for experiments in this paper. Experimental results show that the proposed dual core architecture
implemented on an FPGA can save a lot of computation time without degrading the speech recognition rates.
However, since the computation time is still too much to real-time applications, more cores are necessary to
be integrated to increase the computation ability for an FPGA in the future.
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