
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 8, No. 2, July 2019, pp. 99~106

ISSN: 2089-4864, DOI: 10.11591/ijres.v8.i2.pp99-106 99

Journal homepage: http://iaescore.com/journals/index.php/IJRES

Low power and high performance FFT with different radices

Md. Zakir Hussain
1
, Kazi Nikhat Parvin

2

1Department of Electronics and Communication Engineering, Muffakham Jah college of Engineering and

Technology, Hyderabad, India
2Department of Electronics and Communication Engineering, Bhoj Reddy Engineering College for Women

Hyderabad, India

Article Info ABSTRACT

Article history:

Received Jan 25, 2019

Revised Apr 3, 2019

Accepted May 15, 2019

 FFT is one of the most active blocks in digital signal processing and in

various field of communication systems. FFT has received significant

attention over the past years to increase its capability and versatility. This

paper describes an extensive study on trade-off of different radices with

different computational elements of butterfly such as adders and multipliers.

Finding an efficient radix along with computational elements is the key point

to find best suite i.e. high precision, low power and low area applications like

radar, filtering, image compression etc. The work also considers the precision

and the data format to represent constant value such as Q-point. The

proposed FFT architectures not only uphold better solutions for low power

and high-performance application systems, but also open up a new research

lines. This paper demonstrates that radix-2^3 consumes 43% less LUTs and

17% less power consumption, 40% increase of frequency in radix-2^2 in

comparison with radix-2 algorithm for the combination of CSA with

modified booth multiplier and the increment of frequency about 19%, 26%

less LUTs consumption and 26% less power in Radix-2^2 when compared to

radix-4 with various combination of adder and multiplier. In this work we

have used Xilinx 14.7 XST for synthesis and the target device used is

Spartan6 XC6SLX100. Simulation is carried out in Xilinx ISIM and also

performed timing analysis and generated post-place and route.

Keywords:

Fast Fourier Transform (FFT)

computational elements

Radix-2

Radix-2^2

Radix-2^3 FFT architecture

Radix-4

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Md. Zakir Hussain,

Department of Electronics and Communication Engineering,

Muffakham Jah college of Engineering and Technology,

Hyderabad, Telangana-500005, India.

Email: zakir.hussain@mjcollege.ac.in

1. INTRODUCTION

Fast Fourier transform (FFT) was developed by Cooley-Tukey in 1965 and it plays a vital role in

many arenas. FFT is an efficient class of computational algorithms to speed up DFT as FFT requires less

computations due to its process of recursion known as butterfly [1]. Today’s communication market features

for strong competition regarding news standards. Fourier transform converts time domain to frequency

domain and vice versa, FFT rapidly prefers such transformations. The radix 2 algorithm is well known simple

algorithm for FFT processors, but it requires many complex multipliers [2]. As we move on to higher radices

the number of twiddle factor decreases. FFT requires more computational elements while computing

butterfly units in the radices. As multiplication utilizes large area and consumes more power when

implemented on hardware. The complex computational elements should be reduced i.e. the complex

multipliers and adders to make efficient FFT processor. The adders are very simple and easy to compute

when compared to multipliers. Multiplier is required while multiplying the input with the twiddle factor in

every radix [3].

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 99 – 106

100

This paper is briefly discussed about the different 16-point radices (radix-2, radix-4, radix-2² and

radix-2^3) FFT algorithms using different computational elements (multipliers and adders) and to know the

overall impact on FFT processor. Fixed point representation is implemented while multiplying the input with

the twiddle factor. Trivial and non- trivial multiplication is existing in the radix-4 FFT algorithms [4, 5].

Usage of high radix with higher bit width gives the high precision value in fixed point representation and

used in radar applications, encoding the image. The remaining sections in the paper is organized as follows.

In section II, the paper describes about the radix-2 algorithm. Section III discussed about the radix-4

algorithm. Section IV explains about the radix-2i algorithms (including radix-2^2 and radix-2^3). Section V

clearly gives the idea regarding the proposed work. Section VI represents the synthesis result of different

radices and section VII includes conclusion.

2. RADIX-2 ALGORITHM

Radix-2 FFT algorithm simple radix in used in FFT. The original input vector, x(n) is divided into

two N/2 length vectors i.e. even and odd input terms (xe(n), xo(n)) [6, 7]. The equation is defined as,

X(K)=∑

 (1)

X odd (n) = X(2n)

X even(n)= X(2n+1) n= 0, 1 N/2-1

The radix-2 DIT FFT is rewritten by deriving the equation

 ∑

∑

 (2)

The above equation divides radix-2 in even index inputs and the odd index inputs and then combines

the two results to produce the entire DFT sequence [8, 9]. From the figure, it is observed that the second

input gets multiplied with the twiddle factor and added with the first input to get the first output. Similarly,

the second output is obtained by subtracting the multiplied term with the first input. Figure 1 shows signal

flow graph of 16 Point radix-2 DIT-FFT.

Figure 1. Signal flow graph of 16 point radix-2 DIT-FFT

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Low power and high performance FFT with different radices (Md. Zakir Hussain)

101

3. RADIX-4 FFT ALGORITHM

The radix-4 FFT algorithm consists of two stages when compared to radix-2 FFT. In radix-4

algorithm the point size increases as the multiple of four. Hence, the radix-4 FFT requires fewer stages and

butterflies than the radix-2 algorithm. The main idea of radix-4 DIT FFT is to divide the original input

sequence into four smaller subsequences [10]. Figure 2 shows signal flow graph of radix-4 FFT for N=4.

Figure 3 shows signal flow graph of 16 point radix-4 DIF-FFT.

X(K)=∑_(N=0)^(N-1)▒〖x(n)W_N^nk 〗 , where k= 0, 1, ….N-1

Figure 2. Signal flow graph of radix-4 FFT for N=4

The radix-4 algorithm equation is derived by rewriting (1)

 ∑

 ∑

∑

∑

Figure 3. Signal flow graph of 16 point radix-4 DIF-FFT

0

0

0

0

0

1

2

3

0

2

4

6

0

3

6

9

STAGE 1 STAGE 2

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

X[0]

X[4]

X[8]

X[12]

X[1]

X[5]

X[9]

X[13]

X[2]

X[6]

X[10]

X[14]

X[3]

X[7]

X[11]

X[15]

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 99 – 106

102

4. RADIX- FFT ALGORITHM

4.1. Radix-2^2 algorithm

Radix-2^2approach proposed by He and Torkelson. By using linear mapping techniques,

the two butterfly units are computed to one butterfly unit in radix-22 [11]. For N=16, radix-22 is

computed in two stages but with different twiddle factorswhen compared to radix-2 algorithm.
Figure 4 shows signal flow graph of 16 Point radix-2^2 DIF-FFT. Figure 5 shows signal flow graph of 16

Point radix-2^3 DIT-FFT.

x[0]

x[1]

x[2]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

x[9]

x[10]

x[11]

x[12]

x[13]

x[14]

x[15]

0

0

0

0

0

0

0

0

0

0

0

0

4

4

4

4

0

0

0

0

0

2

4

6

0

1

2

3

0

3

6

9

0

0

0

4

0

0

0

4

0

0

0

4

0

0

0

4

X[0]

X[8]

X[4]

X[12]

X[2]

X[10]

X[6]

X[14]

X[1]

X[9]

X[5]

X[13]

X[3]

X[11]

X[7]

STAGE 1 STAGE 2 STAGE 3 STAGE 4

 X[15]

Figure 4. Signal flow graph of 16 point radix-2^2 DIF-FFT

The radix-2
2
 is derived by writing the equation

 ∑ ∑ ∑

 ∑ [

]

Where

 [(

)] (

) (

)

4.2. RADIX-2^3 ALGORITHM

From the figure, it indicates that in radix-2^3 algorithm the twiddle factor exists in third stage [12].

The equation of radix-2^3 algorithm can be derived as follows

 ∑

Where

 (

)

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Low power and high performance FFT with different radices (Md. Zakir Hussain)

103

4

16

x[0]

X[4]

X[2]

X[6]

X[1]

X[5]

X[3]

X[7]

x[1]

x[9]

x[5]

x[13]

x[3]

x[11]

x[7]

x[15]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

X[8]

X[9]

X[10]

X[11]

X[12]

X[13]

X[14]

X[15]

0

0

0

0

0

0

0

0

0

0

0

0

4

1

4

1

0

0

0

0

0

0

0

0

0

0

0

8

12

20

24

28

0

0

0

4

4

4

4

3

6

9

12

15

18

24

STAGE 1 STAGE 2 STAGE 3 STAGE 4

Figure 5. Signal flow graph of 16 point radix-2^3 DIT-FFT

5. PROPOSED WORK

In this paper, the proposed work demonstrates using the different combinations of the computational

elements and implementation of those computational elements (multipliers and adders) in different radices

such as radix-2, radix-4, radix-2
2
 and radix-2^3 FFT architectures for 16-point. The overall impact and

performance is considered in different radices using different computational elements. The work focuses on

the FFT architecture and the computations to be done in each butterfly unit in the radix using the different

combinations of multipliers. From the above signal flow graphs, it is illustrated that to compute twiddle

factor with the input, the multiplication is necessary. So efficient multiplier should be considered to have an

efficient radix in FFT processors.

Firstly, different computational elements (multipliers and adders) have been studied and utilized in

different radices to acquire the efficient FFT architecture. In this paper, the different multipliers used such as

Booth multiplier, Modified Booth [13], Canonical signed Digit (CSD) [6], multipliers to compute twiddle

factor in butterfly unit. The adder used is carry save adder as it is faster and more efficient when compared to

carry-look ahead adder.

5.1. Twiddle Factor Multiplication

Twiddle factor multiplication plays significant role in solving the butterfly unit in each stage of the

different radices. While multiplying the twiddle factor with the value, an efficient multiplier is used in the

radix. Different twiddle factors used in 16-point radices are represented as:

From the above figure, it is observed that how the multiplication and addition process occur in the

butterfly units in the radix. Wherever the addition requires adder is used in that place and for multiplication

different above mention multipliers can used. Twiddle factor values are represented as 0.707, 0.923.0.382,

these values are converted into binary form and then represented in Q-format (fixed point representation)

[14]. The twiddle factor values represented in Q-format are shown below in the Table 1. Figure 6 shows

diagram of butterfly unit.

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 99 – 106

104

A+jB

C+jD

1

-1

A+jB+C+jD

WN*(A+JB-

(C+jD))
WN

Twiddle

factor

Twiddle factor

multiply with the

input value to get the

output value

Addition of two

input complex

numbers

Figure 6. Diagram of butterfly unit

Table 1. Twiddle factor values represented in radix-2 DIT FFT
TF value Binary value Q-format value

0.707 +(1011_0100_1111_111) 0_00000_1011010011

-0.707 -(1011_0100_1111_111) 1_00000_1011010011
0.923 +(1110_1100_0100_101) 0_00000_1110110001

-0.923 -(1110_1100_0100_101) 1_00000_1110110001

0.382 +(0110_0001_1100_101) 0_00000_0110000111
-0.382 -(0110_0001_1100_101) 1_00000_0110000111

5.2. Fixed point Multiplication

Fixed point multiplication has different method to multiply two signed or unsigned numbers. Fixed

point number representation the number of digits or bits are fixed either before or after the radix point i.e.

binary point. Figure 7 shows format of fixed-point number.

Sign

bit M-integer bits N fractional bits

Binary point

N- bits

Figure 7. Format of fixed-point number

6. RESULTS

This paper deliberates the implementation of 16- point radices using the different combination

of computational elements in the butterfly unit of FFT architecture. The analysis and comparison are

made between different radices of FFT. The functionality of different multiplier modules was verified by

running the test benches, simulations and synthesis in Xilinx ISE 14.7 tools using Spartan 6 family.

From the above Tables 2 and 3, it is illustrated that the Vedic multiplier consumes less LUTs (502) and

canonical signed digit consumes less delay 18.052ns for 16-bits. Carry save adder is faster when

compared to carry look ahead adder.

From the above Tables 4 and 5, it is observed that

Comparison result of different radices (radix-2, radix-2^2 and radix-2^3) in percentage:

a) Radix-2^3 consumes 43% less LUTs when compared to the radix-2.

b) Radix-2^2 increases the frequency(MHZ) about to 40% when compared to radix-2.

c) Radix-2^3 consumes 17% less power(W) when compared to radix-2.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Low power and high performance FFT with different radices (Md. Zakir Hussain)

105

Comparison result of different radices (radix-4 and radix- 2^2) in percentage:

a) Radix-2^2 consumes 26% less LUTs than radix-4.

b) Radix-2^2 increases the frequency (MHZ) about to 19% when compared to radix-4.

c) Radix-2^2 consumes 26% less power(W) when compared to radix-4.

Table 2. Comparison between different multipliers

Types of multiplier Number of bits Slice LUTs Delay(ns)

Modified 8bit 202 18.295

 Booth 16bit 824 31.526

Canonical signed 8bit 203 13.25

digit (CSD) 16bit 916 18.052

Vedic
8bit 106 18.176
16bit 502 18.399

Table 3. Comparison between different adders
Types of adders Number of bits Slice LUTs Delay(ns)

Carry-Save Adder using RCA at last stage
8 bits 22 10.855
16 bits 45 17.344

Carry Look Ahead Adder (CLA)
8 bits 14 8.841

16bits 28 12.433

Table 4. Comparison between radix-4 and radix-2^ 2
Computational Elements Radix-4 Radix-2^2

Multiplier Adder Slice LUTs
Freq Power

Slice LUTs
Freq Power

(MHZ) (W) (MHZ) (W)
Modified Booth CSA 3227 61.126 0.210 3171 62.187 0.155

CSD CSA 4316 53.154 0.155 4433 53.106 0.115

Vedic CLA 4153 51.298 0.199 3669 50.232 0.170

Table 5. Comparison between radix-2, radix-2^2 and 2^3 FFT algorithms
Computational Elements Radix-2 Radix-2^2 Radix-2^3

Multiplier Adder Slice LUTs
Freq Power

Slice LUTs
Freq Power

Slice LUTs
Freq Power

(MHZ) (W) (MHZ) (W) (MHZ) (W)
Modified

CSA 3179 46.39 0.22 3171 62.187 0.155 2957 54.68 0.177
Booth

CSD CSA 5251 37.278 0.177 4433 53.106 0.115 5101 45.297 0.218
Vedic CLA 4024 42.053 0.253 3669 50.232 0.17 3641 50.414 0.208

7. CONCLUSION

This paper has presented an efficient multiplicative and additive method for the FFT algorithm,

where various combinations of computational elements were discussed, placing the emphasis on the butterfly

units of the different radices such as radix-2, radix-4, radix-2^2 and radix-2^3 FFT algorithms. These

different radices algorithm has been realized by Verilog code. The synthesis results shown in the

Tables 1 and 2 confirms the efficient radix by computing the butterfly units with different combinations of

computational elements. In this paper, the architectures for 16-point FFTs are analyzed, and the architectures

with different computational elements are simulated and synthesized. The synthesis result shows the best

performance in terms of LUTs and frequency (MHZ). In summary, our proposed work is to reduce power

consumption, reduces the area and increases the speed of FFT architectures.

REFERENCES
[1] M. Aaravind Kumar and Dr. k Manjunath Chari, “Complex-multiplier implementation for pipelined FFTs in

FPGAs”, IEEE conference, 2015.

[2] Behrooz parhami, “computer arithmetic: algorithms and hardware designs”, oxford university press, inc. New york,

ny, usa ©2009.

[3] Amir Kaivani, and Seok-bum Ko, “Area efficient floating-point FFT butterfly architectures based on multi-operand

adders”, Electronics Letters, vol.51 no.12, 2015.

[4] E. Wold and A. Despain, “Pipeline and parallel-pipeline FFT processors for VLSI implementations,” IEEE

transactions on computers, vol. c- 33, no. 5, pp. 414–426, 1984.

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 99 – 106

106

[5] Ma, Z.-G., Yin, X.-B., Yu, F.: “ A novel memory-based FFT architecture for real-valued signals based on a radix-2

decimation-in-frequency algorithm”. IEEE trans. circ. syst. ii: exp. briefs 62, 876–880 (2015).

[6] R. Hartley, “Subexpression sharing in filters using canonic signed digit multipliers,” IEEE trans. circuits & syst. ii,

vol. 43, oct. 1996.

[7] Sidinei Ghissoni, Eduardo costa, Ricardo reis, “Reusing smaller optimized FFT blocks for the realization of larger

power- efficient radix-2 FFTs”, IEEE conference, 2015.

[8] Lakshmi Santhosh, Anoop Thomas, “Implementation of radix-2 and radix-2^2 FFT algorithms on spartan6 FPGA”

IEEE conference, 2013.

[9] S.Bouguezel, M.O.Ahmad, M.N.S. Swamy, “A new radix-2/8 FFT algorithm for length- qx2m DFTs”, IEEE

transaction, volume no 51, 2004.

[10] Amirfattahi, “Calculation of computational complexity for radix-2p fast fourier transform algorithms for medical

signals”, Journal of Medical Signals and Sensors, vol 3, no 4, 2013.

[11] J. Cooley, P. Lewis, and P. Welch, “Historical notes on the fast fourier transform,” proc. IEEE,vol. 55, no. 10, pp.

1675–1677, oct. 1967.

[12] M. Shin and H. Lee, “A high-speed four-parallel radix-24 FFT processor for UWB applications,” in proc. IEEE int.

symp. circuits syst. (ISCAS), 2008, pp.960–963.

[13] A. Cortés, I. Vélez, and J. F. Sevillano, “Radix rk FFTs: matricial rep- representation and sdc/sdf pipeline

implementation,” IEEE trans. signal process., vol. 57, no. 7, pp. 2824–2839, jul. 2009.

[14] Arish. S and R.K. Sharma, “Run-time configurable multi-precision floating point multiplier design for high speed,

low power applications”, IEEE conference on spin, 2015.

