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 FFT is one of the most active blocks in digital signal processing and in 

various field of communication systems. FFT has received significant 

attention over the past years to increase its capability and versatility. This 

paper describes an extensive study on trade-off of different radices with 

different computational elements of butterfly such as adders and multipliers. 

Finding an efficient radix along with computational elements is the key point 

to find best suite i.e. high precision, low power and low area applications like 

radar, filtering, image compression etc. The work also considers the precision 

and the data format to represent constant value such as Q-point. The 

proposed FFT architectures not only uphold better solutions for low power 

and high-performance application systems, but also open up a new research 

lines. This paper demonstrates that radix-2^3 consumes 43% less LUTs and 

17% less power consumption, 40% increase of frequency in radix-2^2 in 

comparison with radix-2 algorithm for the combination of CSA with 

modified booth multiplier and the increment of frequency about 19%, 26% 

less LUTs consumption and 26% less power in Radix-2^2 when compared to 

radix-4 with various combination of adder and multiplier. In this work we 

have used Xilinx 14.7 XST for synthesis and the target device used is 

Spartan6 XC6SLX100. Simulation is carried out in Xilinx ISIM and also 

performed timing analysis and generated post-place and route. 
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1. INTRODUCTION  

Fast Fourier transform (FFT) was developed by Cooley-Tukey in 1965 and it plays a vital role in 

many arenas. FFT is an efficient class of computational algorithms to speed up DFT as FFT requires less 

computations due to its process of recursion known as butterfly [1]. Today’s communication market features 

for strong competition regarding news standards. Fourier transform converts time domain to frequency 

domain and vice versa, FFT rapidly prefers such transformations. The radix 2 algorithm is well known simple 

algorithm for FFT processors, but it requires many complex multipliers [2]. As we move on to higher radices 

the number of twiddle factor decreases. FFT requires more computational elements while computing 

butterfly units in the radices. As multiplication utilizes large area and consumes more power when 

implemented on hardware. The complex computational elements should be reduced i.e. the complex 

multipliers and adders to make efficient FFT processor. The adders are very simple and easy to compute 

when compared to multipliers. Multiplier is required while multiplying the input with the twiddle factor in 

every radix [3]. 
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This paper is briefly discussed about the different 16-point radices (radix-2, radix-4, radix-2² and 

radix-2^3) FFT algorithms using different computational elements (multipliers and adders) and to know the 

overall impact on FFT processor. Fixed point representation is implemented while multiplying the input with 

the twiddle factor. Trivial and non- trivial multiplication is existing in the radix-4 FFT algorithms [4, 5]. 

Usage of high radix with higher bit width gives the high precision value in fixed point representation and 

used in radar applications, encoding the image. The remaining sections in the paper is organized as follows. 

In section II, the paper describes about the radix-2 algorithm. Section III discussed about the radix-4 

algorithm. Section IV explains about the radix-2i algorithms (including radix-2^2 and radix-2^3). Section V 

clearly gives the idea regarding the proposed work. Section VI represents the synthesis result of different 

radices and section VII includes conclusion. 

 

 

2. RADIX-2 ALGORITHM 

Radix-2 FFT algorithm simple radix in used in FFT. The original input vector, x(n) is divided into 

two N/2 length vectors i.e. even and odd input terms (xe(n), xo(n)) [6, 7]. The equation is defined as, 

 

X(K)=∑       
    

    (1) 

 

X odd (n) = X(2n) 

 

X even(n)= X(2n+1) n= 0, 1 N/2-1 

 

The radix-2 DIT FFT is rewritten by deriving the equation 

 

     ∑        
   

 

 
  

   
∑          

       
 

 
  

    (2) 

 

The above equation divides radix-2 in even index inputs and the odd index inputs and then combines 

the two results to produce the entire DFT sequence [8, 9]. From the figure, it is observed that the second 

input gets multiplied with the twiddle factor and added with the first input to get the first output. Similarly, 

the second output is obtained by subtracting the multiplied term with the first input. Figure 1 shows signal 

flow graph of 16 Point radix-2 DIT-FFT. 

 

 

 
 

Figure 1. Signal flow graph of 16 point radix-2 DIT-FFT 
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3. RADIX-4 FFT ALGORITHM 

The radix-4 FFT algorithm consists of two stages when compared to radix-2 FFT. In radix-4 

algorithm the point size increases as the multiple of four. Hence, the radix-4 FFT requires fewer stages and 

butterflies than the radix-2 algorithm. The main idea of radix-4 DIT FFT is to divide the original input 

sequence into four smaller subsequences [10]. Figure 2 shows signal flow graph of radix-4 FFT for N=4. 

Figure 3 shows signal flow graph of 16 point radix-4 DIF-FFT. 

 

X(K)=∑_(N=0)^(N-1)▒〖x(n)W_N^nk 〗 , where k= 0, 1, ….N-1 

 

 

 
 

Figure 2. Signal flow graph of radix-4 FFT for N=4 

 

 

The radix-4 algorithm equation is derived by rewriting (1) 
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Figure 3. Signal flow graph of 16 point radix-4 DIF-FFT 
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4. RADIX-    FFT ALGORITHM 

4.1.  Radix-2^2 algorithm 

Radix-2^2approach proposed by He and Torkelson. By using linear mapping techniques, 

the two butterfly units are computed to one butterfly unit in radix-22 [11]. For N=16, radix-22 is 

computed in two stages but with different twiddle factorswhen compared to radix-2 algorithm. 
Figure 4 shows signal flow graph of 16 Point radix-2^2 DIF-FFT. Figure 5 shows signal flow graph of 16 

Point radix-2^3 DIT-FFT. 
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Figure 4. Signal flow graph of 16 point radix-2^2 DIF-FFT 

 

 

The radix-2
2
 is derived by writing the equation 
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4.2.  RADIX-2^3 ALGORITHM 

From the figure, it indicates that in radix-2^3 algorithm the twiddle factor exists in third stage [12]. 

The equation of radix-2^3 algorithm can be derived as follows 
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Figure 5. Signal flow graph of 16 point radix-2^3 DIT-FFT 

 

 

5. PROPOSED WORK 

In this paper, the proposed work demonstrates using the different combinations of the computational 

elements and implementation of those computational elements (multipliers and adders) in different radices 

such as radix-2, radix-4, radix-2
2
 and radix-2^3 FFT architectures for 16-point. The overall impact and 

performance is considered in different radices using different computational elements. The work focuses on 

the FFT architecture and the computations to be done in each butterfly unit in the radix using the different 

combinations of multipliers. From the above signal flow graphs, it is illustrated that to compute twiddle 

factor with the input, the multiplication is necessary. So efficient multiplier should be considered to have an 

efficient radix in FFT processors. 

Firstly, different computational elements (multipliers and adders) have been studied and utilized in 

different radices to acquire the efficient FFT architecture. In this paper, the different multipliers used such as 

Booth multiplier, Modified Booth [13], Canonical signed Digit (CSD) [6], multipliers to compute twiddle 

factor in butterfly unit. The adder used is carry save adder as it is faster and more efficient when compared to 

carry-look ahead adder.  

 

5.1.  Twiddle Factor Multiplication 

Twiddle factor multiplication plays significant role in solving the butterfly unit in each stage of the 

different radices. While multiplying the twiddle factor with the value, an efficient multiplier is used in the 

radix. Different twiddle factors used in 16-point radices are represented as: 

 

  
    

    
    

    
    

    
    

    
    

   

 

From the above figure, it is observed that how the multiplication and addition process occur in the 

butterfly units in the radix. Wherever the addition requires adder is used in that place and for multiplication 

different above mention multipliers can used. Twiddle factor values are represented as 0.707, 0.923.0.382, 

these values are converted into binary form and then represented in Q-format (fixed point representation) 

[14]. The twiddle factor values represented in Q-format are shown below in the Table 1. Figure 6 shows 

diagram of butterfly unit. 
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Figure 6. Diagram of butterfly unit 

 

 

Table 1. Twiddle factor values represented in radix-2 DIT FFT 
TF value  Binary value Q-format value 

0.707 +(1011_0100_1111_111) 0_00000_1011010011 

-0.707 -(1011_0100_1111_111) 1_00000_1011010011 
0.923 +(1110_1100_0100_101) 0_00000_1110110001 

-0.923 -(1110_1100_0100_101) 1_00000_1110110001 

0.382 +(0110_0001_1100_101) 0_00000_0110000111 
-0.382 -(0110_0001_1100_101) 1_00000_0110000111 

 

 

5.2.  Fixed point Multiplication 

Fixed point multiplication has different method to multiply two signed or unsigned numbers. Fixed 

point number representation the number of digits or bits are fixed either before or after the radix point i.e. 

binary point. Figure 7 shows format of fixed-point number. 

 

 

Sign 

bit M-integer bits N fractional bits

Binary point

N- bits

 
 

Figure 7. Format of fixed-point number 

 

 

6. RESULTS 

This paper deliberates the implementation of 16- point radices using the different combination 

of computational elements in the butterfly unit of FFT architecture. The analysis and comparison are 

made between different radices of FFT. The functionality of different multiplier modules was verified by 

running the test benches, simulations and synthesis in Xilinx ISE 14.7 tools using Spartan 6 family. 

From the above Tables 2 and 3, it is illustrated that the Vedic multiplier consumes less LUTs (502) and 

canonical signed digit consumes less delay 18.052ns for 16-bits. Carry save adder is faster when 

compared to carry look ahead adder. 

From the above Tables 4 and 5, it is observed that  

Comparison result of different radices (radix-2, radix-2^2 and radix-2^3) in percentage: 

a) Radix-2^3 consumes 43% less LUTs when compared to the radix-2. 

b) Radix-2^2 increases the frequency(MHZ) about to 40% when compared to radix-2. 

c) Radix-2^3 consumes 17% less power(W) when compared to radix-2. 
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Comparison result of different radices (radix-4 and radix- 2^2) in percentage: 

a) Radix-2^2 consumes 26% less LUTs than radix-4. 

b) Radix-2^2 increases the frequency (MHZ) about to 19% when compared to radix-4. 

c) Radix-2^2 consumes 26% less power(W) when compared to radix-4. 

 

 

Table 2. Comparison between different multipliers 

Types of multiplier Number of bits Slice LUTs Delay(ns) 

Modified 8bit 202 18.295 

 Booth 16bit 824 31.526 

Canonical signed 8bit 203 13.25 

digit (CSD) 16bit 916 18.052 

Vedic 
8bit 106 18.176 
16bit 502 18.399 

 

 

Table 3. Comparison between different adders 
Types of adders Number of bits Slice LUTs Delay(ns) 

Carry-Save Adder using RCA at last stage 
8 bits 22 10.855 
16 bits 45 17.344 

Carry Look Ahead Adder (CLA) 
8 bits 14 8.841 

16bits 28 12.433 

 

 

Table 4. Comparison between radix-4 and radix-2^ 2 
Computational Elements Radix-4 Radix-2^2 

Multiplier Adder Slice LUTs 
Freq Power 

Slice LUTs 
Freq Power 

(MHZ) (W) (MHZ) (W) 
Modified Booth CSA 3227 61.126 0.210 3171 62.187 0.155 

CSD CSA 4316 53.154 0.155 4433 53.106 0.115 

Vedic CLA 4153 51.298 0.199 3669 50.232 0.170 

 

 

Table 5. Comparison between radix-2, radix-2^2 and 2^3 FFT algorithms 
Computational Elements Radix-2 Radix-2^2 Radix-2^3 

Multiplier Adder Slice LUTs 
Freq Power 

Slice LUTs 
Freq Power 

Slice LUTs 
Freq Power 

(MHZ) (W) (MHZ) (W) (MHZ) (W) 
Modified 

CSA 3179 46.39 0.22 3171 62.187 0.155 2957 54.68 0.177 
Booth 

CSD CSA 5251 37.278 0.177 4433 53.106 0.115 5101 45.297 0.218 
Vedic CLA 4024 42.053 0.253 3669 50.232 0.17 3641 50.414 0.208 

 

 

7. CONCLUSION 

This paper has presented an efficient multiplicative and additive method for the FFT algorithm, 

where various combinations of computational elements were discussed, placing the emphasis on the butterfly 

units of the different radices such as radix-2, radix-4, radix-2^2 and radix-2^3 FFT algorithms. These 

different radices algorithm has been realized by Verilog code. The synthesis results shown in the  

Tables 1 and 2 confirms the efficient radix by computing the butterfly units with different combinations of 

computational elements. In this paper, the architectures for 16-point FFTs are analyzed, and the architectures 

with different computational elements are simulated and synthesized. The synthesis result shows the best 

performance in terms of LUTs and frequency (MHZ). In summary, our proposed work is to reduce power 

consumption, reduces the area and increases the speed of FFT architectures. 
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