
International Journal of Reconfigurable and Embedded Systems

Vol. 7, No. 2, July 2018, pp. 115~123

ISSN: 2089-4864, DOI: 10.11591/ijres.v7.i2.pp115-123  115

Journal homepage: http://iaescore.com/journals/index.php/IJRES/index

Analysis of CMOS Logic and Transmission Gate for 64 Bit

Parallel Prefix Adders

Nehru.K, Nagarjuna T., Somanaidu U.

Department of Electronics and Communication Engineering, Institute of Aeronautical Engineering,

Hyderabad, India

Article Info ABSTRACT

Article history:

Received Apr 16, 2018

Revised Jun 17, 2018

Accepted Jun 25, 2018

 Parallel prefix adder network is a type of carry look ahead adder structure.

It is widely considered as the fastest adder and used for high performance

arithmetic circuits in the digital signal processors. In this article,

an introduction to the design of 64 bit parallel prefix adder using

transmission technique which acquires least no of nodes with the lowest

transistor count and low power consumption is presented. The 64 bit parallel

prefix adder is designed and comparison is made between other previously

parallel prefix adders. The result shows that the proposed 64 bit parallel

prefix adder is slightly better than existing parallel prefix adders and it

considerably increases the computation speed.The spice tool is used for

analysis with different supply voltages.

Keywords:

Brent kung adder

Carry look ahead adder

Kogge stone

Ladner fischer

Prefix adder Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Nehru K.,

Department of Electronics and Communication Engineering,

Institute of Aeronautical Engineering,

Hyderabad, 500043, India.

Email: nnehruk@gmail.com

1. INTRODUCTION

Simple overlaying of all output evaluation trees from the unoptimized prefix algorithm leads to

the tree-prefix algorithm proposed by [1]. This leads to a high fan-out of some black nodes (O (n),

unbounded fan-out) but results in the smallest possible number of node delays (minimal depth), a small

number of signals and very few wiring tracks(O(log n)).The Kogge-Stone adder is a parallel prefix form of

carry look-ahead adder. It generates the carry signals in O (log n) time, and is widely considered as the fastest

adder design possible. It is the common design for high-performance adders in industry [2-4]. This is

achieved by using a large number of independent tree structures in parallel.The generate signal indicates that

the outgoing carry is 1, independent of the incoming carry, while the propagate signal indicates that

the outgoing carry is equivalent to the incoming carry. A simpler Brent-Kung adders was been proposed to

solve the disadvantages of Kogge-Stone adders [5], [6]. It has only 2N-2-log2N carry merge blocks, so

the cost and wiring complexity is greatly reduced. But the logic depth of Brent-Kung adders increases to

2log2N-1, so the speed is slower.Han and Carlson proposed an algorithm which combines the advantages of

the Brent-Kung and the Kogge-Stone algorithms by mixing them [7], [8]. The first and last levels are of the

Brent-Kung type while the Kogge-Stone graph is used in the middle. The number of parallel trees and thus

the number of black nodes and interconnections is reduced at the cost of a slightly longer critical path,

compared tothe Kogge-Stone adder [9], [10].

  ISSN: 2089-4864

IJRES Vol. 7, No. 2, July 2018 : 115 – 123

116

2. PARALLEL PREFIX ADDERS

2.1. New Prefix Cell Operators

In this PPA, the dot operator ‘ ’ and the semi-dot operator ‘ ’are introduced. The dot operator

 ‘ ’ is defined by the equation (1) and the semi-dot operator ‘ ’ is defined by the equation (2).

(Pi,Gi) (Pi-1,Gi-1)=(Pi.Pi-1, Gi+Pi.Gi-1) (1)

(Pi,Gi) (Pi-1,Gi-1)=(Gi+Pi.Gi-1) (2)

In the above equation, ‘•’ operator is applied on two pairs of bits (Pi,Gi) and (Pi-1,Gi-1) . These bits

represent generate and propagate signals used in addition. The output of the operator is a new pair of bits

which is again combined using a dot operator ‘ ’ or semi-dot operator ‘ ’ with another pairs of bits.

This procedural use of dot operator ‘ ’ and semi-dot operator ‘ ’ creates a prefix tree network which

ultimately ends in the generation of all carry signals.

 (3)

 (4)

In the final step, the sum bits of the adder are generated with the propagate signals of the operand

bits and the preceding stage carry bit using a xor gate. The semi-dot operator ‘ ’ will be present as last

computation node in each column of the prefix graph structures, where it is essential to compute only

generate term, whose value is the carry generated from that bit to the succeeding bit.

2.2. Four Operators Cells

In the first stage, generation and propagation signals generated by XORgates respectively.

For deriving the carry signals in the second stage, this architecture introduces four different computation

nodes for achieving improved performance.

2.3. 8 Bit Parallel Prefix Adder

The 8-bit parallel prefix having four stages for generating carries in the middle PPA network is

shown in Figure 1. This 8-bit PPA contains three odd-dot cells, one even-dot cells, three odd-semi-dot cells

and two even-semi-dot cells along with three inverters pairs.

Figure 1. 8-Bit parallel prefix adder

2.4. 16 Bit Parallel Prefix Adder

The 16 bit parallel prefix adder is shown in Figure 2.The generation and propagation signals can be

generated by using the equation (3) and (4). This stage is responsible for creations of group generate and

group propagates signals. The 16-bit parallel prefix having five stages for generating carries in the middle

PPA network. This 16-bit PPA contains seven odd-dot cells, four even-dot cells, nine odd-semi-dot cells and

six even-semi-dot cells along with seven inverters pairs. The second stage in the prefix addition is termed as

prefix computation.

• •
• •

•

•

• •
• •

(.)i iG a b=

()i iP a b= 

•

IJRES ISSN: 2089-4864 

Analysis of CMOS Logic and Transmission Gate for 64 bit Parallel Prefix Adders (Nehru K.)

117

Figure 2. 16-Bit parallel prefix adder

2.5. 32-Bit Parallel Prefix Adders

Figure 3 shows the architecture of the proposed 32-bit parallel prefix adder. The objective is to

eliminate the massive overlap between the prefix sub-terms being computed. Hence the associate property of

the dot operator is employed to keep the number of computation nodes at a minimum. The first stage of

the computation is called as pre-processing. The first stage in the architectures of the 32-bit prefix adder

involve the creation of generate and propagate signals for individual operand bits in active low format.

The equations (3) and (4) represent the functionality of the first stage.

From the equations (3) and (4), ai, bi represent input operand bits for the adder, where ‘i’ varies from

0 to 31. The second stage in the prefix addition is termed as prefix computation. This stage is responsible for

creation of group generates and group propagate signals. The stages with odd indexes use odd-dot and

odd-semi-dot cells where as the stages with even indexes use even-dot and even-semi-dot cells.

Figure 3. 32-Bit parallel prefix adder

3. PROPOSED 64-BIT PARALLEL PREFIX ADDER

Figure 4 shows the architecture of 64 bit parallel prefix adder. The proposed 64-bit parallel prefix

adder has ten stages of implementation. CMOS logic family will implement only inverting functions.

Thus cascading odd cells and even cells alternatively gives the benefit of elimination of two inverters

between them, if a dot or a semi-dot computation node in an odd stage receives both of its input edges from

any of the even stages and vice-versa. But it is essential to introduce two inverters in a path, if a dot or a

semi-dot computation node in an even stage receives any of its edges from any of the even stages and vice-

versa. From the prefix graph of the proposed structure shown in Figure 4, we assume that there are only few

edges with a pair of inverters, to make (G, P) as (𝐺,̅ 𝑃)̅̅ ̅ or to make (𝐺,̅ 𝑃)̅̅ ̅ as (G, P) respectively

  ISSN: 2089-4864

IJRES Vol. 7, No. 2, July 2018 : 115 – 123

118

Figure 4. 64-Bit proposed parallel prefix adder

The pair of inverters in a path is represented by a in the prefix graph. By introducing two

cells for dot operator and two cells for semi-dot operator, we have eliminated a large number of inverters.

Due to inverter elimination in paths, the propagation delay in those paths would have reduced. Further we

achieve a benefit in power reduction, since these inverters if not eliminated, would have contributed to

significant amount of power dissipation due to switching. The output of the odd-semi-dot cells gives

the value of the carry signal in that corresponding bit position. The output of the even-semi-dot cell gives

the complemented value of carry signal in that corresponding bit position. The final stage in the prefix

addition is termed as post-processing. The final stage involves generation of sum bits from the active low

propagate signals of the individual operand bits and the carry bits generated in true form or complement

form. The first stage and last stage are intrinsically fast because they involve only simple operations on

signals local to each bit position. The intermediate stage embodies long distance propagation of carries,

 so the performance of the adder depends on the intermediate stage.

4. SIMULATION AND RESULT DISCUSSION

4.1. 8-Bit Parallel Prefix Adder

Schematic and simulation results for 8 bit parallel prefix adder are shown in Figure 5 and Figure 6.

The inputs given are bit patterns to the T spice. The schematic is drawn by using library model files.

The T spice is used to generate the netlist from the S edit.S-edit is a tool is used for schematic.

Figure 5. Schematic diagram for 8-Bit parallel prefix adder

IJRES ISSN: 2089-4864 

Analysis of CMOS Logic and Transmission Gate for 64 bit Parallel Prefix Adders (Nehru K.)

119

Figure 6. Transient result for 8-Bit parallel prefix adder

4.2. 16-Bit Parallel Prefix Adders

Schematic and simulation results for 16 bit parallel prefix adder are shown in Figure 7 and Figure 8.

The inputs given are bit patterns to the T spice. The schematic is drawn by using library model files.The T

spice is used to generate the netlist from the S edit.S-edit is a tool is used for schematic.

Figure 7. Transient result for 16-Bit parallel prefix adder

Figure 8. Transient result for 16-Bit parallel prefix adder

  ISSN: 2089-4864

IJRES Vol. 7, No. 2, July 2018 : 115 – 123

120

4.3. 32-bit Parallel Prefix Adders

A schematic and simulation result for 32 bit parallel prefix adder is shown in Figure 9 and Figures

10 & 11. The inputs given are bit patterns to the T spice. The schematic is drawn by using library model

files.The T spice is used to generate the netlist from the S edit.S-edit is a tool is used for schematic.

Figure 9. Block diagram for 32-Bit parallel prefix adder

Figure 10. Transient result for 32-Bit parallel prefix adder

Figure 11. Transient result for 32-Bit parallel prefix adder

IJRES ISSN: 2089-4864 

Analysis of CMOS Logic and Transmission Gate for 64 bit Parallel Prefix Adders (Nehru K.)

121

4.5. Proposed 64-Bit Parallel Prefix Adder

Schematic and simulation results for 64 bit parallel prefix adder is shown in Figure 12 and

Figures 13, 14 & 15. The inputs given are bit patterns to the T spice. The schematic is drawn by using library

model files. The T spice is used to generate the netlist from the S edit. S-edit is a tool is used for

drawing schematic.

Figure 12. Schematic diagram for Proposed 64-Bit parallel prefix adder

Figure 13. Transient result for Proposed 64-Bit parallel prefix adder

Figure 14. Transient result for Proposed 64-Bit parallel prefix adder

  ISSN: 2089-4864

IJRES Vol. 7, No. 2, July 2018 : 115 – 123

122

Figure 15. Transient result for proposed 64-Bit parallel prefix adder

4.6. Results & Discussions

The power comparison shows that when number of input bits increased, the power consumed by

the adder will also increase as shown in Tables 1 and 2.The transistor count for different size of adder as

shown in Tables 3 and 4.

Table 1. CMOS Based Prefix Adders-Power

Consumptiion (mW)
Prefix Adders 8 BIT 16 Bit 32 Bit 64 Bit

Brent Kung 84.41 148.89 463.8 706.34

Ladner Fischer 84.62 139.40 374.65 778.21

Kogge Stone 82.32 159.87 385.44 733.44

Proposed Adder 76.41 141.45 348.33 684.23

Table 2. TG Based Prefix Adders–Power

Consumption (mW)
Prefix Adders 8 BIT 16 B 32 Bit 64 Bit

Brent Kung 57.48 134.23 254.56 577.87

Ladner Fischer 59.57 136.10 258.43 584.23

Kogge Stone 69.34 139.25 259.66 621.24

Proposed Adder 51.33 123.45 221.60 522.56

Table 3. CMOS Based Prefix Adders-Mosfet Counts
Prefix Adders 8 BIT 16 Bit 32 Bit 64 Bit

Brent Kung 304 704 1598 3442

Ladner Fischer 318 782 1930 4170

Kogge Stone 318 782 1930 4170
Proposed Adder 282 658 1334 2676

Table 4. TG Based Prefix Adders–Mosfet Counts
Prefix Adders 8 BIT 16 Bit 32 Bit 64 Bit

Brent Kung 284 636 1404 3014

Ladner Fischer 292 684 1580 3488

Kogge Stone 292 684 1640 3496

Proposed Adder 278 634 1294 2600

5. CONCLUSION

We have compared proposed low power 64 bit parallel prefix adder results with existing parallel

prefix adders such as 8 bit PPA, 16-bit PPA and also with 32bit PPA. The proposed low power 64-bit parallel

prefix adder was designed by using the four different prefix cell operators. The performances in terms of

power, number of nodes, number of transistor tradeoffs for various input ranges were analyzed and discussed

with the results .For 64-bit low power Parallel Prefix Adder seventeen stages were used for generating

the sixty three carries outputs and 1339 nodes were formed in the 64-bit low power Parallel Prefix Adder.

This makes our proposed low power adder was most suitable for complex digital systems.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of Institute of Aeronautical Engineering

management for providing the lab facilities.

IJRES ISSN: 2089-4864 

Analysis of CMOS Logic and Transmission Gate for 64 bit Parallel Prefix Adders (Nehru K.)

123

REFERENCES
[1] Yang S, Lau KT, Zhang Y. Design of Low Power CMOS Parallel Prefix Adder Cell. Journal of Electrical

Engineering and Electronic Technology. 2017 Jan 25;2016.

[2] Gaur N, Tyagi D, Mehra A. Performance comparison of adder architectures on 28nm FPGA. InAdvances in

Computing, Communication, & Automation (ICACCA)(Fall), International Conference on 2016 Sep 30

(pp. 1-5). IEEE.

[3] Zarandi AA, Molahosseini AS, Hosseinzadeh M, Sorouri S, Antao S, Sousa L. Reverse converter design via

parallel-prefix adders: Novel components, methodology, and implementations. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems. 2015 Feb;23(2):374-8.

[4] Rani G, Kumar S. Delay analysis of parallel-prefix adders. International Journal of Science and Research (IJSR).

2014 Jun;3(6):2339-42.

[5] Ramanathan P, Vanathi PT. High Performance Parallel Prefix Adder For Wider Word Lengths. Global Journal of

Pure and Applied Mathematics. 2015;11(2):733-43.

[6] Perri S, Lanuzza M, Corsonello P. Design of high‐speed low‐power parallel‐prefix adder trees in nanometer

technologies. International Journal of Circuit Theory and Applications. 2014 Jul 1;42(7):731-43.

[7] Sasidharan S, Sandeep PM, Varatharaj M, Scholar UG, Departmentof EC. Design of Hybrid Parallel Prefix Adders

for the Reverse Converters. International Journal of Engineering Science. 2016 Mar;2964.

[8] Roy S, Choudhury M, Puri R, Pan DZ. Towards optimal performance-area trade-off in adders by synthesis of

parallel prefix structures. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2014

Oct;33(10):1517-30.

[9] Banerjee S, Rao W. A general approach for highly defect tolerant parallel prefix adder design. InDesign,

Automation & Test in Europe Conference & Exhibition (DATE), 2016 2016 Mar 14 (pp. 666-671). IEEE.

[10] Hassanzadeh A, Shabani A. Low Power Parallel Prefix Adder Design Using Two Phase Adiabatic Logic. Journal of

Electrical and Electronic Engineering. 2015;3(6):181-6.

BIOGRAPHIES AUTHORS

Nehru K received his Bachelor Degree in Erode Sengunthar Engineering College, Anna

University in 2005. And he obtained his Master Degree in R.M.K Engineering, Anna University

in 2007.And he also obtained outstanding master student at that year. He is obtained his Ph.D in

2014 at Faculty of Information and Communication Engineering, Anna University, India. His

main research interest is in the area of Low Power VLSI, Testing of VLSI Circuits, FPGA

Design, CAD for VLSI, Signal processing. He has published papers on these topics in various

international journals.

Nagarjuna Telagam is with the Electronics and Communication Engineering Department,

Institute of Aeronautical Engineering, Hyderabad, India. He is a Research Scholar in

Sathyabama University and is interested in the following topics: Wireless Communications,

MIMO, OFDM, GFDM, Embedded Systems, VLSI. Currently, He is working as Assistant

Professor. He Received his B.Tech degree from JNTU University/ Narayana Engineering

College. He received his master degree from Anna University/ Loyola Institute of Technology.

He is Anna University rank holder (20) for M.E degree in 2013. He published papers in different

Referred Journals (nagarjuna473@gmail.com).

U.SOMANAIDU received B.TECH. degree in Electronics and Communications Engineering

from JNTU University, Kakinada, in 2011,Currently doing M. Tech. in PEC Engineering

college, from JNTUK University, Kakinada. His research interests include VLSI and Embedded

systems.

