
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 6, No. 2, July 2017, pp. 69~81

ISSN: 2089-4864, DOI: 10.11591/ijres.v6.i2.pp69-81  69

Journal homepage: http://iaescore.com/journals/index.php/IJRES/index

Software and Hardware for Managing Scratch Pad Memory

Chabane Hemdani
1
, Rachida Aoudjit

2
, Mustapha Lalam

3
, Khaled Slimani

4

Laboratoire de Recherche en Informatique (LARI) BP n 17 RP, University of Tizi Ouzou, Algeria

Article Info ABSTRACT

Article history:

Received Apr 2, 2017

Revised Apr 20, 2017

Accepted May 7, 2017

 This paper proposes a low-cost architecture to improve the management

SPM (Scratch Pad Memory) in dynamic and multitasking modes. In this

context, our management strategy SPM based on Programmable Automaton

implemented in Xilinx Vertex-5 FPGA is entirely different from prior

research works. SPM is generally managed by software (by a strong

programming logic or by compilation). But our Programmable Automaton

facilitates access to SPM in order to move code or data and liberates space in

SPM. After this step, software takes over content management of SPM (what

part of code or data should be placed in SPM, locates spaces of Heap and

Stack). So the performance of the programs is actually improved thanks to

minimization of the access latency at the DRAM (Dynamic Random Access

Memory or Main Memory).

Keywords:

Core

Embedded Systems

FPGA

Scratch Pad Memory

Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mustapha Lalam,

Laboratoire de Recherche en Informatique (LARI)

BP n 17 RP University of Tizi Ouzou, Algeria.

Email: lalamustapha@yahoo.fr

1. INTRODUCTION

A well finished conception of the memory hierarchy subunits contributes to the improvement of the

performances of an Embedded System in particular on the timing, the scheduling, the energy consumption,

the multi-tasking and the predictability. It is in this context that locates our idea to manage effectively a local

static memory SRAM to be used as Scratch Pad Memory (SPM). Our approach on use of this SPM is

inspired from previous works of the literature while proposing an original hybrid solution that is to manage

SPM by hardware (Programmable Automaton) and by System calls. SPM endowed with its coprocessor is

connected to a core of a multi-core system. Every core has its own SPM and this one can be accessible by

other cores for a better efficiency of the Multi-Tasking and of Multi-processing.

SRAM on chip, called SPM, is a small memory of fast access which is located in a space of separate

addressing of the DRAM but connected to the same addresses bus and to the same data bus [1]. SPM is

managed by software. In other words, the stored data in SPM are managed by Programmers or Compilers [2].

It is possible to have Cache memory and SPM in the same Embedded System. Contrary to the SPM, the

cache is managed by hardware. But both have a latency of access of a cycle; on the other hand the access

memory off chip (generally a DRAM) asks for several cycles (from 10 to 20 cycles). One of the main

differences between the SPM and the cache is that SPM guarantees an access time of a cycle while the cache

is subject to the compulsory, capacity and conflict misses [1]. Our solution founded itself on the works

proposed in [3] in the partitioning of SPM but we propose an original management of SPM by combining

hardware and software (OS level). For that purpose, we endow SPM of an implemented function in FPGA

circuit (Xilinx Vertex-5 FPGA).

This paper is composed of 6 sections. The first Section gives an overview onto the state of the art of

SPM. The section 2 shows the organization of SPM in frames. We then chain on the structure SHFS (Stack

Heap Frame Structure) stored in DRAM memory. We introduce functions of Automaton in the section 3. The

section 4 recommends various Algorithmic State Machines that Automaton executes as well as DMA mode

  ISSN: 2089-4864

 IJRES Vol. 6, No. 2, July 2017 : 69 – 81

70

(Direct Memory Access) executed under aegis of the Operating System (OS). The following section

completes the hardware of the automaton under the form of a circuit FPGA realized under EDK. The section

6 gives an insight of simulation of the coprocessor which we recommend and the resources of the circuit

FPGA used during the synthesis for realizing the coprocessor.

2. STATE OF THE ART

The use of SPM showed an improvement of the performance and a reduction of the energy [1], [3]-

[5], [16]-19]. In 1997, [1] proposed a static strategy for partitioning scalar and array variables in an

application code into SPM and off-chip DRAM accessed through data cache. They described a method of

partition that shows the usefulness on-chip SPM in addition to a data cache. [9] Proposed SPM scheme which

can be embedded onto FPGA's circuit or multi-core processors chips as a coprocessor to decrease the

memory access time of the key/value pairs used directly from SPM to accelerate MapReduce applications.

The proposed MapReduce scratchpad memory is used to replace the Reduce stage with a single special

memory unit that is used to store and automatically accumulate the values of the keys in MapReduce

application. This architecture proposed in [9] does not correspond to our initiative of design of the

coprocessor which manages SPM. According to [5], [8] presented a hardware/software approach for dynamic

management scheme of SPM. Their approach introduces a hardware component designed specially to

manage the copying of instructions from the main memory into SPM. They utilize instructions execution

frequency information to model applications as graph and perform graph partitioning to determine locations

within the program for initiating the copying process. The Authors of [7] showed a different approach to

static usage scheme for SPM by mapping applications on the existing hardware [5]. The paper [10] proposed

a runtime memory management approach for SPM at the OS-level that can be combined with other compile-

time approaches. The OS memory manager takes annotations inserted into the code by the programmer as

hints to choose the most appropriate memory (i.e. Main Memory or SPM) for each allocation. Experimental

results confirm the approach’s efficiency when compared to a similar compile-time technique [10].

The technique which assigns heap dated in the SPM was proposed in [14]. Despite of being the first

technique that allocates heap data to SPM, it follows the dynamic compile-time-approach [10].

According to [5], [6] proposed another static management scheme for recording data and instructions

memory. Their scheme uses a polynomial time algorithm for partitioning and instructions into DRAM and

SPM. Their results show energy improvement ranging from 39 % to 84 % over a no partitioned SPM.

Another work that deals with the management of Heap data was presented in [15]. Paper [11] specified that

multi-core systems have been a popular design for high performance Embedded Systems. The Authors

propose one polynomial-time algorithm to solve the data allocation problem on multi-core system with

exclusive copy of data. The proposed solution reduces time cost of memory accesses by 16.45 % on average.

The solution also can reduce the energy cost significantly. There are also several works proposed for SPMs

on the multi-core Systems [1], [11]-[13].

Our contribution in this domain consists in managing the SPM by hardware (a circuit of type FPGA

called coprocessor) and by software by means of system calls (OS level). SPM endowed with its coprocessor

is connected with Core of a multi-core system. Each Core has its own SPM and this one can be accessible by

other Cores for a better efficiency of the Multi-Tasking. The coprocessor absorbs certain requests of reading

or writing and so the performance of the programs will be actually improved thanks to the minimization of

access frequencies to DRAM memory.

3. PARTITION OF SPM INTO FRAMES

The SPM is divided into frames of equal capacities [3]. Each of (n-1) first frames contains two parts:

a. Space for heap,

b. Space for stack.

Each of these two spaces is glanced through an index pointer (heap pointer and Stack point respectively). The

last frame of the SPM (SHFn-1) contains the profilers of (n-1) frames, as shown in Figure 1. Every task has its

profiler. What do we find into the profiler of a frame SHFk that belongs to the task k? The profiler SHFk

contains:

a. outset address of the stack in BS (Backup Storage) situated in Main Memory,

b. outset address of the heap in BS,

c. outset address of the stack in the SPM,

d. Outset address of the heap in the SPM.

The stack can be on one or on several frames SHFs. The heap can also be on one or several frames

SHFs. SHF is independently assigned of the other SHFs and there is no internal relation between them. Every

IJRES ISSN: 2089-4864 

Software and Hardware for managing Scratch Pad Memory (Chabane Hemdani)

71

SHF is completely used until there is not a free place any more. No new SHF is assigned to a task on the

condition that all the SHFs assigned to this task are completely filled. This way of operating implies three

interests:

a. No empty fragment,

b. Reduction of the complexity in the track and in the preservation of the structures which are used to

manage various stacks and heaps,

c. Opportunity to use multitasking.

Partition of SPM into frames is as follows Figure 1:

A mechanism is necessary to manage these SHFs [3]. For that purpose, we plan a structure SHFS

(Stack and Heap Frame Structures) taken up residence in Main Memory which will specify the state of every

SHF and its membership. When a request of a task is thrown to have a free frame SHF, the structure SHFS

will be referenced by system primitive to find a free possible one SHF in the SPM and attribute it to the task.

Across SHFS, the tasks are informed if they can make a request for a SHF and where it is exactly situated. If

there is not a free space any more in SPM and we cannot allocate a new SHF, we request the Main Memory

to assign a space for the stack and a space for a heap for every task at the level of the BS. We associate an

additional structure BS taken up residence in Main Memory for the stack and the heap of every task. It is the

role of OS to insure the management of the structures SHFS and BS. All BS are created and maintained in

the Main Memory [3]. They will be unused if there are enough spaces in SPM. The contents of a BS will not

be again transferred towards the SHFs [3]. SPM accesses are less expensive in energy consumption than the

accesses for DRAM (off chip DRAM). The SHFS structure in Main Memory is as follows Figure 2:

Figure 1. Organization of the SPM into frames

[3]

Figure 2. Structure of SHFS (Stack Heap Frame Structure)

in DRAM Memory.

4. ROLE OF AUTOMATON
The Automaton fills four features:

a. Solicits the DMAC (Direct Memory Access Controller), through the OS for the Data Transfer by DMA

from the DRAM towards the SPM or vice versa,

b. Reading or writing in the Heap of the SPM,

c. Push or Pull in the stack of the SPM,

d. If the space of addressing of the request of access of the data is out of the limits of the SPM, it sends

back the request towards the upper level of the hierarchy memory.

4.1. DMA Transfer

In DMA access, DMAC (Direct Memory Access Controller) formulates a request of access to Core

so that it frees the Buses of addresses and data. As soon as possible, Core informs the DMAC by means of a

signal of permission (DGRANT) to take up buses and use the SPM. Core puts its Buses in state of high

impedance. The DMAC can then reaches SPM by regaining control freed buses by Core.

4.2. Reading or writing in the Heap of the SPM
The automaton receives read request (Load) or write request (store) of the taski and it accesses to

profiler of the taski situated in SHn-1 of SPM to reach Tasi.

Profile of the TASi=(Register SHn-1)+TIDi./(TIDi=Task Identifier i)/

  ISSN: 2089-4864

 IJRES Vol. 6, No. 2, July 2017 : 69 – 81

72

4.3. Push or Pull in the stack of SPM

The automaton receives the request of the taski (Push or Pull) and accesses to profiler of the taski

situated in SHn-1 of the SPM to reach stacki.

4.4. Space of Addressing of the Request Outside the Limits of SPM
If the addressing space of the request of access to the data is out of the limits of SPM, the

Automaton sends back the request towards the superior hierarchy memory (DRAM). Programmer of code

specifies, in its code, if he wants to allocate a dynamic memory in SPM. This can be made, for example, by

type MALLOC's instruction or its equivalent. The liberation of the dynamic memory is made, for example,

by type FREE's instruction or its equivalent. On the meeting FREE’s instruction in code, a procedure (it

doesn’t belong to the Automaton) reaches the structure SHFS in Main Memory by putting all fields SHFk of

the Task K to 0 (nil), field TDIK to 0 and releases BSk. This procedure can be integrated into the code by

Programmer of code. Synoptic scheme of Automaton is showed in following Figure 3:

Figure 3. Internal Synoptic scheme of the automaton

5. ALGORITHMIC STATE MACHINE (ASM) DIAGRAM OF AUTOMATON AND DMA MODE

5.1. We present Algorithmic State Machine (ASM) chart of Automaton, diagram easier to understand and

less formal that State diagram:

IJRES ISSN: 2089-4864 

Software and Hardware for managing Scratch Pad Memory (Chabane Hemdani)

73

5.2. ASM diagram of Heap block T1

5.3. ASM diagram of Stack block T2

  ISSN: 2089-4864

 IJRES Vol. 6, No. 2, July 2017 : 69 – 81

74

5.4. ASM diagram of DMA T1-3

6. HARDWARE REALIZATION AND SIMULATION OF AUTOMATON EMBEDDED ON A

FPGA CIRCUIT

To design a complete system as shown in Figure 4 we used EDK (Embedded Development Kit) of

Xilinx who allows us to conceive our own embedded system with a processor Micro blaze on the EDK. Our

coprocessor (SPM_IP) is implemented as an IP (Intellectual Property) directly to connect to the Micro blaze

through a connection DFSL (Direct Fast Simplex Link) and to the memory SPM as shown in Figure 4).

Figure 4. System architecture

Components of the system, The system which we built includes the following components:

6.1. Micro Blaze

Micro Blaze is an embedded soft-core processor designed and optimized for the implementation in

the FPGA Xilinx. Micro Blaze is a RISC processor in 3 floors with architecture Harvard and 32 internal

registers of 32 bits. The processor contains approximately 70 options of configuration allowing the user to

select or to parameterize the internal components according to its needs. Among the configurable options, we

may cite: size of the cache, depth of pipeline, integrated peripherals, MMU, bus interfaces etc.

Xi kernel is the operating system which works on our Micro Blaze. Xi kernel includes an API of

POSIX. This API allows us to define the various tasks (threads) and the various functions to reach the

peripherals of the system.

IJRES ISSN: 2089-4864 

Software and Hardware for managing Scratch Pad Memory (Chabane Hemdani)

75

6.2. SPM

SPM is implemented by using BRAM of 128 KB. The block BRAM is a configurable memory

module (implemented in VHDL) which possesses two ports A and B. In our case the port A is connected to

the BRAM CONTROLLER which is an interface between the bus PLB and SPM. The port B is connected to

the coprocessor.

6.3. DMA Controller

DMA Controller supplies simple services of direct access to the memory (DMA) to peripherals and

in devices memory connected to the bus PLB. DMA Controller transfers a quantity of data resulting from an

address source towards an address destination without intervention of the processor. In our case, it serves to

transfer the data between SPM and the DRAM according to the algorithm previously presented.

6.4. DFSL

FSL (Fast Simplex Link) is a bus of unidirectional communication channel based FIFO used to

make a fast communication between two elements of FPGA. The depth of FIFO can achieve 8K. The

interface FSL is available on the processor Micro Blaze. In our system we used the DFSL version (Direct

FSL) which is implemented without FIFO (to increase the speed of communication), to interconnect our

coprocessor to the Micro Blaze.

6.5. PLB bus

PLB (Processor Local Bus) supplies an infrastructure of bus to connect an optional number of

peripherals (masters and slaves) in the system. In our system we also find a DRAM of capacity of 256 MB,

an interruption controller and a timer.

6.6. Coprocessor SPM_IP

In this part we present the signals of SPM_IP as shown in Figure 5:

Figure 5. Signals of SPM_IP

SPM_IP possesses two interfaces:

6.6.1. DFSL: connects the coprocessor to the Micro Blaze to exchange the data with it.

It possesses two types of signals: Master's degree (Micro blaze-> SPM_IP) and Slave (SPM_IP->

Micro Blaze).

6.6.2. BRAM_PORT_B: connect SPM_IP to BRAM (SPM) to be able to read and write in the latter.

The internal structure of SPM_IP is described in Figure 6. It consists of four units:

INSTRUCTION_DECODER, SPM_HANDLER, SPM_INTERFACE and CPU_INTERFACE.

This separation allows realizing every function in a separate component. Therefore, it facilitates the

translation in code VHDL the various components Hardware in the synthesis tool.

  ISSN: 2089-4864

 IJRES Vol. 6, No. 2, July 2017 : 69 – 81

76

Figure 6. Internal structure of SPM_IP

7. SIMULATION

Direct writing in SPM to initialize it shown in Figure 7.

Figure 7. Direct writing in the SPM to initialize it

IJRES ISSN: 2089-4864 

Software and Hardware for managing Scratch Pad Memory (Chabane Hemdani)

77

In “1”, coprocessor receives data from Micro blaze (FSL_M_Write='1'). First, it receives the

instruction via FSL_M_Data 0x0FFFFFF (CMD=00), then the data to be written and finally the address

0x8A231004. In “2”, data is written in the SPM.

7.1. Read in TAS
In "1", coprocessor receives data from Micro Blaze (FSL_M_Write='1'). In "2", it decodes the

instruction (CMD=11, TASK_ID=0001, REQUEST=001). In "3", SPM_HANDLER hurries up and begins to

load registers 4, 5, 6, 7, 8.

PROFILER_POINTER: 0x8A300004-PROFILER_ADDRESS: 0x8A310004-HEAP_CURR_PTR_SPM:

0x8A2000F-STAK_CURR_PTR_SPM: 0x8A2005F-HEAP_CURR_PTR_DRAM: 0x900000FF

STAK_CURR_PTR_DRAM: 0x9000 10EF.

In "8", SPM_HANDLER receives a memory word of the SPM 0xCCCCDDDD that it sends it

towards the CPU in "10" via FSL_S_Data and it positions FSL_S_Control, FSL_S_Exists and

INTERRRUPT to the high state impedance. Read in TAS shown in Figure 8.

Figure 8. Read in TAS

7.2. Write in TAS

Shown in Figure 9 write in TAS. Always after the load of registers

PROFILER_POINTER: 0x8A300004-PROFILER_ADDRESS: 0x8A310004-HEAP_CURR_PTR_SPM:

0x8A20000F-STAK_CURR_PTR_SPM: 0x8A20005F-HEAP_CURR_PTR_DRAM: 0x900000FF

STAK_CURR_PTR_DRAM: 0x9000 10EF

In "1", Writing of the data 0xF2222222 at the address

HEAP_CURR_PTR_SPM=0x8A2000F+4=0x8A200013. In "2" And "3", Updated

HEAP_CURR_PTR_SPM 0x8A200013) and HEAP_CURR_PTR_DRAM (0x900000FF+4=0x90000103) in

the SPM. In "4", sending a suite of A, 0xAAAAAAAA as request to inform the Micro Blaze that a DMA

transfer (SPM towards DRAM) is necessary.

  ISSN: 2089-4864

 IJRES Vol. 6, No. 2, July 2017 : 69 – 81

78

Figure 9. Write in TAS

7.3. Pull the stack

Shown in Figure 10 pull the stack. Always after the load of the registers

PROFILER_POINTER: 0x8A300004-PROFILER_ADDRESS: 0x8A310004-HEAP_CURR_PTR_SPM:

0x8A20000F-STAK_CURR_PTR_SPM: 0x8A20005F-HEAP_CURR_PTR_DRAM: 0x900000FF

STAK_CURR_PTR_DRAM: 0x9000 10E.

Figure 10. Pull the stack

In "1", reading data 0xDAAAEEEF from address STAK_CURR_PTR_SPM: 0x8A20005F. In "2",

updating of STAK_CURR_PTR_SPM (0x8A20005F+4=0x8A200063) in the SPM. In "3", sending data to

the Micro Blaze.

7.4. Push in the stack

Shown in Figure 11 Push in the stack. Always after the load of registers

PROFILER_POINTER: 0x8A300004-PROFILER_ADDRESS: 0x8A310004-HEAP_CURR_PTR_SPM:

0x8A20000F

IJRES ISSN: 2089-4864 

Software and Hardware for managing Scratch Pad Memory (Chabane Hemdani)

79

STAK_CURR_PTR_SPM: 0x8A20005F-HEAP_CURR_PTR_DRAM: 0x900000FF-

STAK_CURR_PTR_DRAM: 0x9000 10EF

Figure 11. Push in the stack

0x8A20005B) and HEAP_CURR_PTR_DRAM (0x9000 10EF-4=0x900010EB) in the SPM.

In "4", sending a suite of A, 0xAAAAAAAA as request to inform the Micro Blaze that a DMA

Transfer (SPM to DRAM) is necessary.

7.5. Case HEAP_CURR_PTR_SPM is not lower than STAK_CURR_PTR_SPM:

In this case we send a suite of 0xEEEEEEEE as request to inform the Micro Blaze that the profiler

of the concerned task is full and thus a DMA transfer (SPM to DRAM) is necessary.

7.6. DMA Transfer

Shown in Figure 12 DMA Transfer.

Figure 12. DMA Transfer

7.7 Resources of FPGA used during the Synthesis:

We implemented our coprocessor on the Xilinx vertex 5 LX50T-1156 of DIGILENT; the following

table shows resources of the FPGA used by our coprocessor. As Shown in Table 1:

  ISSN: 2089-4864

 IJRES Vol. 6, No. 2, July 2017 : 69 – 81

80

Table 1. Resources of FPGA used by the coprocessor
Device Utilization Summary [-]

Slice Logic Utilization Used Available Utilization Note(s)

Number of Slice Registers 591 28,800 2%
Number used as Flip Flop 591

Number of Slice LUTs 972 28,800 3%

Number used as logic 968 28,800 3%
Number using O6 output only 736

Number using O5 output only 111

Number using O5 and O6 121
Number used as exclusive route-thru 4

Number of route-thrus 115

Number using O6 output only 115
Number of occupied Slices 282 7,200 3%

Number of LUT Flip Flop pairs used 1,012

Number with an unused Flip Flop 421 1,012 41%
Number with an unused LUT 40 1,012 3%

Number of fully used LUT-FF pairs 551 1,012 54%

Number of unique control sets 9
Number of slice register sites lost to control set restrictions 5 28,800 1%

Number of bonded IOBs 173 480 36%

Number of BUFG/BUFGCTRLs 1 32 3%
Number used as BUFGs 1

Average Fanout of Non-Clock Nets 4.52

8. CONCLUSION

The hardware circuit of Automaton totally finalized, in complement with software management of

SPM, constitutes a platform of tests which promises considerable advantages in the choice of an effective

management of data and of code to put into SPM for their exploitation in the Embedded Systems. This

original realization hardware offers the opportunity to look easily and dynamically the storage space of the

data and the code for an optimized solution in the communication of the data in core or multi-core for a better

efficiency of the Multi-tasking. Afterward, we intend to set up a software method of exploitation of the

locality of the data and of the code to feed SPM and proceed to the study of the performance (latency of

access, rate of success, run time, energy consumption) of this new SPM endowed with the coprocessor which

we designed.

REFERENCES
[1] Preeti Ranjan Panda, Nikil D. Dutt, Alexandru Nicolau, Efficient Utilization of Scratch-Pad Memory in Embedded

Processor Applications. Proceedings of the 1997 European Design and Test Conference (ED&TC’97), pp. 7-11,

Paris, Mar. 1997 IEEE.

[2] Sheng-Wei Huang, Yung-Chang Chiu, Zhong-Ho Chen, Ce-Kuen Shieh, Alvin Wen-Yu Su, Tyng-Yeu Liang, A

Region-based Allocation Approach for Page-based Scratch-Pad Memory in Embedded Systems. International

Conference on Computational Science and Engineering. DOI 10.1109/CSE.2009.350. 2009 IEEE.

[3] Wei Hu, Tianzhou Chen, Qingsong Shi, Feng Sha, Efficient Utilization of Scratch-Pad Memory for Embedded

Systems, 978-1-4244-3304-9/09, 2009 IEEE.

[4] R. Banakar et al., Scratchpad memory: A design alternative for cache on-chip memory in embedded systems, In

Proceedings of 10th International Symposium on Hardware/Software Codesign (CODES), 2002, pp 73-78, ACM

Press.

[5] Andhi Janapsatya, Aleksandar Ignjatović and Sri Parameswaran, Exploiting Statistical Information for

Implementation of Instruction Scratchpad Memory in Embedded System, IEEE Transactions On Very Large Scale

Integration (VLSI) Systems, Volume 14, issue 8, August 2006, pp 816-829. DOI: 10.1109/TVLSI.2006.878470.

ISSN: 1063-8210.

[6] F. Angiolini, L. Benini and A. Caprara, Polynomial-Time Algorithm for On-chip Scratchpad Memory

Partitioning, International Conference on Compilers, Architecture and Synthesis for Embedded Systems.

Proceedings of the 2003.

[7] F. Angiolini et al., A Post-Compiler Approach to Scratchpad Mapping of code, International Conference on

Compilers, Architecture and Synthesis for Embedded Systems. Proceedings of the 2004.

[8] A. Janapsatya, A. Ignjatovic, and S. Parameswaran, Hardware/Software Managed Scratchpad Memory for

Embedded System, International Conference on Computer Aided Design, Proceedings of 2004.

[9] Christoforos Kachris, Georgios CH. Sirakoulis; Dimitrios Soudris, “A MapReduce Scratchpad Memory for Multi-

core Cloud Computing Applications”, Microprocessors and Systems, Volume 39, issue 8, November 2015, pp599-

608, Reprint submitted to Elsevier pp1-27, Elsevier 12, 2016.

IJRES ISSN: 2089-4864 

Software and Hardware for managing Scratch Pad Memory (Chabane Hemdani)

81

[10] Tiago Rogério Mück and Antônio Augusto Fröhlich,Run-Time Scratch-pad Memory for Embedded Systems,

978-1-61284-971-3/11, 2011 IEEE.

[11] Yibo Guo, Qingfeng Zhuge, Jingtong Hu, Meikang Qiu and Edwin H. M. Sha, Optimal Data Allocation for

Scratch-Pad Memory on Embedded Multi-core Systems, 2011 International Conference on Parallel Processing.

DOI 10.1109/ICPP.2011.79. IEEE Computer Society.

[12] Z. Hu, G. Gerfin, B. Dobry, and G. R. Gao, Programming experience on Cyclops-64 multi-core chip architecture,

in STMC ’06, 2006.

[13] W. Che, A. Panda, and K. S. Chatha, Compilation of stream programs for multi-core processors that incorporate

scratchpad memories, in DATE ’10, 2010, pp1118-1123.

[14] U. Angel Dominguez and R. Barua, Heap Data Allocation to Scratch-Pad Memory in Embedded Systems, J.

Emdedded Comput. 1(4):521-540, 2005.

[15] R. Mcllroy, P. Dickman, and J. Sventek, Efficient dynamic heap allocation of scratch-pad memory, In ISMM’08:

Proceedings of the 7th international symposium on Memory management, pages 31-40, New York, NY, USA, 2008,

ACM.

[16] Jun Zhang et al., Optimizing Data Allocation for loops on Embedded Systems with Scratch-Pad Memory, 2012

IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. DOI

10.1109/RTCSA.2012.20.

[17] B. Anuradha, Sandhya Nair LJ, Dr C Vivekanandan, An Optimization Technique to Improve Power Consumption

of Embedded System, International Journal of Engineering and Innovative Technology (IJEIT), Vol. 2, issue 10,

April 2013.

[18] Vishwesh Jatala, Jayvant Anatpur, Amey Karkare, “Scratchpad sharing GPUs”, arXiv:1607.3238v5 [CS.AR], 12

feb 2017, pp1-34.

[19] Böhnert M., Scholl C. (2016) Task Variants with Different Scratchpad Memory Consumption in Multi-Task

Environments. In: Hannig F., Cardoso J.M.P., Pionteck T., Fey D., Schröder-Preikschat W., Teich J. (eds)

Architecture of Computing Systems-ARCS 2016. ARCS 2016. Lecture Notes in Computer Science, vol 9637.

Springer, Cham.

BIOGRAPHIES OF AUTHORS

Chabane HEMDANI received his Engineering degree in Computer Science from University of

Tizi Ouzou (Algeria) and his Master II degree in Computer Science from the same University

in 1998. He teaches Computer Architecture at the University of Tizi Ouzou (Algeria) since

1999. He is currently preparing his PhD Thesis in Computer Science. His research interests

include Embedded Systems, Compiler Design and Operating Systems.

RACHIDA AOUDJIT is an Assistant Professor at Computer Science Institute, form

University of Tizi Ouzou. She is also a research member at the LARI Laboratory of the

Computer Science Department. Her areas of interest include Mobile and Sensor networks,

Embedded systems, Vehicular networks, Internet of Things.

Mustapha LALAM received his Engineering degree in Computer Architecture from the

School of Computer Science (Center of Studies and of Research in Computer Science,

Algiers, Algeria) in 1980 and PhD in 1990 in Computer Science from University of Toulouse

III (France). He is one of Inventors of four Patents on Serial Multiport Memory. He is

Professor in the Computer Science at the University of Tizi Ouzou (Algeria) since 2004. His

research interests include Hardware Design, Embedded Systems, Smart Cities, Distributed

Systems and Mobility management for Wireless Mobile Computing and Communications.

Khaled SLIMANI received his Master II degree in Computer Science from the University of

Tizi Ouzou (Algeria) in 2013. He is currently preparing his PhD thesis in Computer Science at

the University of Tizi Ouzou since 2014. His research interests include Computer

Architecture, Hardware Design and Embedded Systems.

