
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 7, No. 1, March 2018, pp. 21~33

ISSN: 2089-4864, DOI: 10.11591/ijres.v7.i1.pp21-33 21

Journal homepage: http://iaescore.com/journals/index.php/IJRES/index

Embedded Hardware Circuit and Software Development of

USB based Hardware Accelerator

Sanket Dessai, Sandeep G.

Departement of Computer Science and Engineering, M.S.Ramaiah University of Applied Sciences, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Dec 5, 2017

Revised Feb 2, 2018

Accepted Feb 15, 2018

 This paper focus on design and develop a Hardware Accelerator which can

plug in to Universal Serial Bus of any modern low power low cost embedded

development system to do complex processing in a plug and play

development environment. Cryptographic algorithms, steganography and

encoding decoding applications can use co-devices to accelerate

performance. In this paper an implementation of a hardware infrastructure for

computing though USB bus of any small scale embedded controller board.

Execution engine of the accelerator will be an FPGA which is connected to

a USB controller with DDR memory to store user data. FPGAs can perform

the process faster than low power microcontrollers to solve such algorithms.

For the implementation XILINX ARTIX 7 FPGA is used to off load

the algorithm for faster processing. System also has a Cypress USB interface

chip for offloading data path. Hardware also has a DRAM memory for

dumping the data to be stored. Design also explores different futuristic

features like interrupt connection for faster response path, shared memory

architecture for hand shake mechanism and GPIO connection for

implementation of faster interfaces for IO expansion.

Keywords:

Embedded Systems

FPGA

Hardware Accelerator

USB

Xilinx ARTIX 7

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Sanket Dessai,

Departement of Computer Science and Engineering,

M.S.Ramaiah University of Applied Sciences,

#470-P, Peenya Industrial Area, Peenya Second Stage, Peenya Bengaluru (Bangalore)-560058.

Email: sanketdessai.cs.et@msruas.ac.in

1. INTRODUCTION

Hardware acceleration is a method of using additional hardware to perform some functions

efficiently and faster than a conventional software running on a more general purpose processing.

 Examples of hardware acceleration include bit boundary bock transfer acceleration functionality in graphics

processing units (GPUs) and regular expression hardware acceleration for spam control in the server

industry. In conventional systems processors are sequential like instructions are executed one by one, and are

designed to run general purpose algorithms controlled by instruction fetch. Hardware Accelerators improve

the execution of a specific algorithm by allowing greater concurrency, having specific data-paths for its

temporary computation of the system, and possibly reducing the overhead of instruction control.

Modern processors are multi-core and often feature parallel SIMD units providing performance yields

benefits [1], [2].

In this paper, design of a hardware accelerator for small form factor embedded designs are discussed

in detail, its development of models are implemented and tested. Figure 1 shows high level components of a

system with hardware accelerator. Normal software execution flow will start with program‟s assembly

code/instructions start interacting with core CPU. Underlying software will control the execution path to

the accelerator. Data path is implemented, as a shared memory using a memory controller taking care of both

RAM and it can be an independent memory for accelerator and CPU and managing it separately.

 ISSN: 2089-4864

 IJRES Vol. 7, No. 1, Maret 2018 : 21 – 33

22

Hardware acceleration is suitable for any repetitive, intensive key algorithm. Depending upon

granularity, hardware acceleration can vary from a small functional unit, to a large functional block like

MPEG algorithm FFT calculation etc [3].

Figure 1. Computing with Hardware Accelerator

Fixed-function implemented on FPGAs, and fixed-function implemented on ASICs; there is a trade

off between flexibility and efficiency, with efficiency increasing by orders of magnitude when any given

application is implemented higher up that hierarchy. Small low power embedded designs are made to serve

a particular functionality. For faster system performance embedded systems often use chip solutions for

faster design time. In such cases the communication between the processor and its peripherals is not

standardized that result in applications developed for one solution is not readily portable to another.

 Our implementation is to solve this problem, by offering embedded systems a programmable logic part in

a generic USB bus which can move from design to design quickly. Currently there is no off the shelf product

available for embedded systems to use as hardware accelerator. However, that such a system be implemented

is fast becoming an imperative given the rise in embedded world‟s growth pace. There are many applications

coming up in industrial and medical and internet of things segments which need processing power added for

special algorithms [3], [4], [5].

1.1. Advantages of Hardware Accelerator

A customized processing unit outside the processor will be able to perform operation much faster

than CPU of equivalent cost. Any added general purpose processor will out perform than a unit which can

perform a specific task due to its design optimised model. Cost of processor is always a linear function of

performance. Accelerators always give a better real time performance compared to generic processor,

which does the task.

Accelerators are good in performing input output operation in real time applications. FPGA are even

capable to implement high speed interfaces such as PCIE express connections. Dedicated hardware consumes

lesser energy compared to the co processors or generic computing processors. External accelerators always

improve performance for data streaming applications such as video audio encoding domains. It is keeps

the cache memory dependency of CPU away from the performance. Bit level operations which are more

frequently used in embedded application too will perform better on a dedicated hardware faster than a single

controller. A single controller or processor can‟t do all the parallel task which are supposed to perform on

a mission critical embedded system [1], [5].

1.2. Challenges and Advantages of Hardware Accelerator in Embedded Systems

The FPGA design acceptance path is relatively long and complex. The design cycle for FPGA based

solutions are longer than software solutions due to the resource requirements. Considering the eco systems

like OpenFPGA and OpenCL kind of software solutions along with FPGA IPs can solve this issue to a great

extent. FPGAs are faster but they can only do only fixed task. Reprogramming capability added to

the software eco system can solve this issue to a great extend even though it is time consuming. For an

example to do beyond just format conversion like data stream filtering, FPGA will have to reprogram with

newly added algorithm using new bit stream as shown in Figure 2.

IJRES ISSN: 2089-4864

Embedded Hardware Circuit and Software Development of USB based Hardware … (Sanket Dessai)

23

FPGA design will be considered as a hardware design that by nature needed more planning and

resources than software implementations. Testing time and process are more complicated in case of FPGA

design software than traditional software. It requires time consuming synthesis and timing analysis to bring it

to the final stage [6]. Hardware accelerated design need to be architected carefully, the designs which are not

architecture well are traditionally will not do their use as shown in Figure 3.

Figure 2. FPGA based IP Video Servillance

Figure 3. FPGA hardware accelerator IO based real-time control systems

Most of the embedded applications that are also real time applications which will demand very strict

timing requirements. Therefore, an operating system that manages these tasks, have to behave in

a deterministic and predictable way. The task scheduler also will have save predictability requirement which

is major overhead. Many of the embedded devices operate on low power segments or in batteries, which will

have many serial ports often used. These input output ports can create unnecessary overhead to the system.

Major part of this overhead can be out sourced to the accelerator part in case of low power devices.

1.3. Challenges and Advantages of Hardware Accelerator in Embedded Systems

All the major embedded systems will have a general-purpose controller and associated hardware

like memory, timers and associated components will be there on board or in ASIC. Depending on application

requirements there can be other components also found like a system which is expected to perform signal

processing tasks can have a multiply and accumulate (MAC), system which used cell phones have cellular

network management related devices incorporated. Embedded system, which are designed for high-speed

network access or memory data access, are likely to have DMA controllers and network interface controllers.

Other than all these systems can have, special high-speed ports or codecs for also implement faster

compression or decompression as shown in Figure 4.

Mathematical routines, which are implemented at a low level with an optimum customised parallel

architecture, can realize using HW accelerators. This removes overhead of control, operating system,

interrupts and interfaces. This implementation is highly deterministic and repeatable in delivering decisions

or orders faster than software realizations in many cases [8], [9].

 ISSN: 2089-4864

 IJRES Vol. 7, No. 1, Maret 2018 : 21 – 33

24

Figure 4. Compression algorithm in software-core

2. SYSTEM ARCHITECTURE DESIGN

In this section a design of system architecture is explained for the USB based hardware accelerator.

2.1. Circuit Design of FPGA Hardware Accelerator in USB

Figure 5. Block Diagram of hardware Accelerator Unit

The system will consist of interface to the computing modules and the FPGA execution engine.

Device also will contain memory required for the data sharing and command exchange between host system

and the accelerator. The design of the overall system contains EZ based USB interface and supporting

EEPROM circuitry to configure the USB interface and for the microcontroller inside. CPLD allows a fast

FPGA configuration through USB. It controls the configurations pins of flash and FPGA. Flash memory is

given to store the FPGA bit stream file to help reprogramming if to use same algorithm to rerun.

Cypress EZ-USB FX2 and FX3 devices are low power, highly integrated USB

microcontroller [10], [11]. They have a fully configurable General Programmable Interface and master/slave

endpoint FIFO, which provides an easy connection to popular interfaces such as ATA, UTOPIA, EPP,

PCMCIA, DSP, and most processors in a glue less way cypress also provides designer tools for users.

FX3 devices provides a USB3 connection for faster data transfer as shown in Figure 5 and Figure 6.

The robust design of the circuit, provide easy to use plug and play capabilities kind of features of

the Universal Serial Bus (USB) gaining great popularity for the interface system. USB has a wide range of

bandwidth choices like low, high and Super speed modes makes it a choice of interface for a range of

applications from slow speed peripherals like mouse keyboard sensors to high band width applications such

as storage disks and scanners. Other than peripheral use, cases it is a proven interface for much high speed

and slow speed industrial and medical applications [12].

IJRES ISSN: 2089-4864

Embedded Hardware Circuit and Software Development of USB based Hardware … (Sanket Dessai)

25

Figure 6. Block Diagram of Dual USB Hardware Accelerator

Table 1. Speed of Different Available Interfaces
Interface Speed

FireWire 800 800 M bits/sec

USB 3.0 5 G bits/sec

USB 3.1 10 G bits/sec
eSATA 6 G bits/sec

Thunderbolt 10 G bits/sec

Thunderbolt 2 20 G bits/sec
Thunderbolt 3 40 G bits/sec

PCI Express 1x 4 G bits/sec (up+dn)

PCI Express 2x 8 G bits/sec (up+dn)

2.2. Design of CPLD and SPI Flash Design for Configuration
For customized applications, a microprocessor or CPLD can be used to configure an Aritx 7 either

series device, Master SelectMAP mode or Slave SelectMAP mode. The 7 series FPGA Master SPI

configuration mode enables the use of low pin-count, industry-standard SPI flash devices for bitstream

storage. In this design, it is use a CPLD to select between EEPROM and FPGA device M [0-2] pins are

selected using CPLD bitstream will be programmed to FPGA according to the selection. Data bus will be

directed to CPLD DDPRM and FPGA according to the user selection as shown in Figure 7.

Through the firmware loaded through the EZ USB to its controller will be the master control of

the application program interface. The internal micro controller will be used program the CPLD which takes

care of the XLINX programming mode and EEPROM path. The firmware inside the micro controller plays a

crucial role in it. Instead of complete implementation of logic inside one FPGA design will have to move

the programming logic to the host machine which can break the portability of Hardware accelerator design

[13], [14], [15].

A LGA package of 45 mm X 42.5 mm is designed with 1356 pins. On top of this package, the die

(silicon) with the size of 10.34374 mm x 20.3797 mm is placed. Table 1 shows the details of the package and

the die.

Figure 7. Block diagram of programming circuit

 ISSN: 2089-4864

 IJRES Vol. 7, No. 1, Maret 2018 : 21 – 33

26

2.3. Design of Interconnect Logic between Blocks
There are multiple bocks in the system which needs data transfer in the system for programming ad

for application data transfer SelectMAP signals are connected between CPLD and FPGA for faster

programming support which is discussed in detail in the above sections. It has a general programmable

interface connection between the FPGA and USB FX2 or FX3 device for faster data transfer between for

applications as shown in Figure 8.

Figure 8. Interface routing diagram

2.4. Power Supply Design for the USB Hardware

Design of power supply and its management for FPGAs plays a crucial part of the overall product.

In this hardware design low power high performance Xilinx Artix 7 FPGA for of loading the logic. Table 2,

gives major voltage inputs and their spec for Artix 7 series.

Table 2. Voltage Levels of Artix 7
Xilinx Virtex-7 Power-supply Reqirements

Power Rail Nominal Voltage (V) Tolerance Description

VCCINT 1.0* ±3%* Voltage supply for the internal core logic

VCCAUX 1.8 ±5% Voltage supply for auxiliary logic
VCCO 1.2 to 3.3 1.11V to 3.45V** Voltage supply for I/O banks

MGTAVCC 1.0 ±3% Voltage supply for GTX transceiver

MGTAVTT 1.2 ±30mV Voltage supply for GTX transceiver termination circuits

Other less important voltage levels are also there in FPGA such as VCCBRAM, VBATT and VREF

that require lesser current. FPGA provide better programming control over CPLD and other devices. A FBG

96 DDR which is used for data sharing as major power consuming devices. Other than these, it need to

consider EEPROM, FLASH and reset chip while considering the power requirements [15]. There are 3 major

power requirements for the board 1 Volt 4 Ampere power supply for the FPGA internal logic and a 3.3 V 2

Ampere supply for the Input Output connection of the FPGA circuit. There is a separate 1.5V 2A power

supply dedicated for DDR circuit. Following sections explains the details of each of these power supply

sections in detail.

For 3.3V and 1.5V it is using AOZ1050 DC DC Buck Regulators, is a high efficiency, easy to use,

2A synchronous buck regulator as shown in Figure 10. The AOZ1050PI works from 4.5 V to 18 V input

voltage range, and provides up to 2 A of continuous output current with an output voltage adjustable down to

0.8 V. If design, follow single power supply for the complete solution circuit will have to support a design of

20A power supply. So in this design a splitting of the power supply to multiple parts according to

the requirement. There is also an option in circuit to switch between USB and external power supply to run

the FPGA in faster mode. RT8288A is a synchronous step-down regulator with an internal power MOSFET

as shown in Figure 11. It can source upto 4A of continuous output current over a wide input supply range

with good load regulation and line regulation as shown in Figure 9.

IJRES ISSN: 2089-4864

Embedded Hardware Circuit and Software Development of USB based Hardware … (Sanket Dessai)

27

Figure 9. Diagram of power supply section for the accelerator

Figure 10. Schematic diagram for 1.5V and 3.3V using AOZ1050

Figure 11. Schematic diagram for 1.0V supply using RT8288

3. DESIGN OF SOFTWARE COMPONENTS

Target or hardware accelerator in this deign need multiple software components to work together to

achieve the performance throughput. Following picture illustrates different software components and there

interoperation. GPIF interface can be designed using Cypress design tool. There will be a role for firmware to

manage the CPLD also. Common interface code, which can be reused across designs. EZ FX firmware code

will be fixed for all the designs. Programming code will flexible enough reconfigure in all the applications.

FPGA interface code will be a common repository, which will have to integrate with applications as shown in

Figure 12.

 ISSN: 2089-4864

 IJRES Vol. 7, No. 1, Maret 2018 : 21 – 33

28

Figure 12. Software Components Interconnection in Target Hardware

Depends on the interface chip accelerator can use DMA Quantum FIFO mechanism used inside

the controller chip for bulk data transfer. FX3 chip has a DMA engine inside which can be used for copying

DDR data through FPGA to the SUB interface without the controller cycle time. In case of FX2 accelerator

will have to make the system work with Quantum FIFO in auto configuration. Design has a dedicated

memory region reserved for implementing the hand shake mechanism. User code result can be informed to

the host through VHD code in the FPGA which is keep monitoring the shared memory region. This can be an

optional model depends on the user code working model.

3.1. Open MP Solution for Embedded Host

OpenMP 4 support a wide range of compute devices Xeon Phis, GPUs, FPGA. OpenMP is use high

level directive based solution by its architecture which helps the developers to spin the applications

faster [16]. In OpenMP threads communicate by sharing variables for synchronizations to control race

conditions. Even though none of the solutions are perfect industry adoption is critical. It supports a standard

for shared memory parallel programming for industry. Programmers always need a write once, and reuse

kind of architecture to avoid rewriting from basic and to provide incremental path essential for application

codes to migrate. To extend the usage of a high-level programming model, OpenMP to multicore embedded

systems and address the architectural challenges, software will have to use a runtime library, which

understands the systems, and it should follow MCAPI as shown in Figure 13.

 In recent developments embedded applications are becoming getting complex day by day and

looking for code re usage as like high level desktop applications due to fats growth in hardware platforms

technologies and applications. Here we are trying to analyse a model with of software APIs and

hardware [17]. Even for highly flexible and efficient hardware design also need support of programming

models and tools.

Figure 13. OpenMP MCAPI software block diagram

for FPGA hardware accelerator

Figure 14. Abstraction in interface level for design

IJRES ISSN: 2089-4864

Embedded Hardware Circuit and Software Development of USB based Hardware … (Sanket Dessai)

29

Physical hardware design can consist any kind of processors or hardware accelerator IP which will

get wrapped using a software API level for overall functional completion. An extra support from drivers and

operating system to get the final layers operational. The final target is to establish an interface layer between

hardware accelerators, processors and application layer and maximum offer performance and memory

management as shown in Figure 14.

OpenMP is a collection of APIs for multi-processor programming languages in C++ [18].

A normal computer running Linux or Windows can be used for application development and FPGA

synthesis. And can use the bitstream along with driver applications to integrate with APIs to show the

performance advantage. Use applications developed in a desktop environment allows faster debugging and

integration. Application code can be transferred to FPGA or distributed between systems.

3.2. Host Application in Basic C Code

All the Embedded development environment will not be having luxury to use little heavy

environment like OpenMP or other APIs. To address this situation, we are exploring one more option here to

implement the hardware accelerator for small scale embedded systems which has a USB inter face to connect

the designed hardware [19]. Figure 16 shows flow chart of application software for C implementation.

Figure 15. Software Implementation

Figure 16. Basic Software flow diagram

 ISSN: 2089-4864

 IJRES Vol. 7, No. 1, Maret 2018 : 21 – 33

30

This design is using libusb, a library that provides applications access for data transfer through USB

interface, which is licensed under LGPL for Linux UNIX windows and other, many other OSs, without

the need for kernel-mode drivers [19]. Its highly portable design makes it favorite for application developers.

This can make the communication implemented without going to complicated kernel mode implementations

as shown in Figure 15. It also has default support from USB 1.0 to 3.0. It also supports synchronous and

asynchronous interface along with all types of transfer types like bulk, interrupt, control and isochronous as

shown in Figure 16.

3.3. Interrupt Implementation for Critical Use Cases

Figure 17. Interrupt implementation for mission citical use cases

FPGA hardware standard code components are added to take care of communication with the host

which will make system more portable. USB EZ to FPGA connection part will be fixed so we can reuse

the code for any applications. All kind of USB transactions are initiated from host. It demands and over head

of port polling to the host application to check if Accelerator has completed the operation. Accelerator has

IOs connected to a separate connector from FPGA to address the situation in time critical applications.

For such applications it can connect the “Job Done” signal from FPGA will be connected to the host

controllers interrupt pin. We will have to modify the host interrupt code to initiate a polling to the shared

memory as shown in Figure 17. Even though there is a little portability issue for the design we have added an

option for interrupt and other GPIOs in the design to make it more user adaptable.The hardware accelerator

had compared with the paper [1], For our design the Artix 7 device function with 96251 logic resources and

131000 memory blocks and can run in 676 MHz system clock.

4. TESTING WITH FFT DESIGNS

The VHDL module calculates two point FFT using the two input samples. The butterfly structure is

shown in below figure. This module takes two inputs say „a‟, „b‟. The input „b‟ is multiplied by twiddle

factor „WN‟. The two outputs „A‟ and „B‟ are calculated by simple addition and subtraction operation of

the two elements as shown in the Figure 18.

Figure 19, shows the state machine of the FFT engine. Data convertor takes data from USB and

passes the data to the DDR which can be later taken by FFT engine for calculation DDR interface can be

generated using Xilinx core generator tool following image shows DDR interface block for interfacing with

FFT engine. The final design can be ported to a pen drive size USB device to plug to any computing system

which has a USB interface. The power consumption of the complete reference circuit comes less than 2W

which will be enough for a USB device. High level C code will be used to communicate with accelerator

from host machine to test the setup. We will be dumping the data through libusb to the DDR for calculation

Figure 20 shows the test setup for the hardware.

IJRES ISSN: 2089-4864

Embedded Hardware Circuit and Software Development of USB based Hardware … (Sanket Dessai)

31

Figure 18. FFT Processor Architecture

Figure 19. FFT State Machine

3.3. Testing of Hardware Accelerator

We will have to implement functions to access accelerator as wrapper implementation. There are

four major functions required for a basic implementation. For reading the shared memory to control

the handshake user need a “read_sm” which will read a fixed memory location from hardware accelerator

DRAM. While implementing VHDL code we need to isolate this memory location. Same way for passing

commands to the hardware accelerator user can use “write_sm”. There are other two functions “read_array”

and “write_array” to read the DRAM locations through USB. Address translation for this also will have to be

part of VHDL code in FPGA. Function to detect the presence of hardware accelerator and change

the program flow is detect_fft_ha following code is used for demonstrating the basic functionality of the total

hardware and system software as shown in Figure 20.

 ISSN: 2089-4864

 IJRES Vol. 7, No. 1, Maret 2018 : 21 – 33

32

Figure 20. Test setup for FPGA Hardware Accelerator

Below test code can be modified for any kind of application which is less time critical. For more

time critical applications, we can use GPIO pin from the FPGA connected to one of the interrupt pin inside

that CPU to trigger the result read back. It saves time as well as CPU resource.

Following code chunk shows basic test code for initial testing of setup

usb.h is header file supplied along with usiblib library for accessing USB hardware.

4. CONCLUSION AND FUTURE WORK

Investigation has been done on major infrastructures and possibilities of hardware accelerator for

embedded application design. Did a detailed literature review of different interface solutions to connect

the accelerator to the embedded system and existing studies on its bandwidth and drawbacks.

Conducted a study on high level software development environments available in the industry in the area of

multi-processing, co-processing and FPGA based solutions. Studied about existing frame works like

OpenCL, OpenMP OpenACC etc. Requirements of a hardware design and software components have been

discussed to address the problem. Different use cases for a hardware accelerator in the area of encryption

compression signal analysis etc and its possibility of using FPGA was analysed and documented. A hardware

design has been done using a Xilinx Aritx7 FPGA. Supporting hardware‟s like DDR interface USB interface

power supply designs for different hardware sections etc has been discussed in the project. A test setup

design and basic functionality testing process defined.

Complex computing requirements in the area of embedded systems will demand low power,

high performance design in the areas where industry is looking for application specific hardware.

Development in the area of plug and play hardware accelerators can bring down the system development

time drastically. As the silicon manufacturing technology continues to scale downward, the same design can

be ported to ultra-small form factor which can help even the product developers to choose from accelerator

IJRES ISSN: 2089-4864

Embedded Hardware Circuit and Software Development of USB based Hardware … (Sanket Dessai)

33

modules. Such modular design will help the industry to avoid going through tedious process of safety and

other certifications. During the phase of design upgradation. There is big possibility for the design in other

computing areas also due to the wide acceptance of the interface used in the design.

Study needs to be conducted to increase the bandwidth by increasing the number of USB channels

get bettor through put. Built in kernel / Compiler support and standards will make hardware accelerators

more acceptable for designers. FPGA template code need further study to add faster interfaces to the low end

embedded platforms like PCI Express / Thunderbolt interface can be added to a raspberry pi board using a

multi channel USB Hardware accelerator. Which can be used as glue logic between architectures. Form

factor of the design can be reduced to make it acceptable for a system which has space concerns in the

existing chassis. Which will help designers to achieve a performance step by adding a small form factor

accelerator to the system and change in application code.

REFERENCES
[1] Trio Adiono.et.al, “An SoC Architecture for Real-Time Noise Cancellation System Using Variable PDF Method,”

International Journal of Electrical and Computer Engineering (IJECE), iaes, Vol 5, No.6, December 2015, pp

1336-1346.

[2] Mazin Rejab Khalil and Aseel Thamer Ibrahem, "Design and Implementation of FFT/IFFT System Using

Embedded Design Techniquies," International Journal of Engineering and Innovative Technology (IJEIT) Volume

3,Issue 6, December 2013. http://www.ijeit.com/Vol%203/Issue%206/IJEIT1412201312_42.pdf (December 2016).

[3] Srihari Cadambi,Igor Durdanovic,Venkata Jakkula,Murugan Sankaradass,Eric Cosatto,Srimat Chakradhar and hans

Peter Graf., "A Massively Parallel FPGA-based Coprocessor for Support Vector Machines," 17th IEEE Symposium

on Field Programmable Custom Computing Machines,ACM,09 Proceedings of the 2009,April 2009,pp 115-122.

[4] Mark Reed, "Overview of Research Computing," ITS Research Computing,

http://www.odum.unc.edu/content/pdf/MReed-ResearchComputingOverview-20121031.pdf (December 2016).

[5] Tomasz S.Czajkowski,Christopher J.Comis,Mohamed Kawokgy Edward S.Rogers "Fast Fourier Transform

Implemenataion for high Speed Astrophysics Applications on FPGAs," University of Toronto,10 Kings College

Road,Toronto,Ontario M5S 3G4, Canada. http://www.eecg.toronto.edu/~czajkow/pubs/ece1373_final_report.pdf

(January 2017).

[6] Sanket Dessai and Krishna Bhushan Vutukuru “Design and Development of Stream Processor Architecture for

GPU Using Reconfigurable Computing”, International Journal of Reconfigurable and Embedded Systems (IJRES),

iaes, Vol 2,No.1, pp 1-14.

[7] Aaron R. Mandle , "Fast based Hardware Acceleration: A Case Study in Protein Identification," Division of

Engineering,Brown University,BSc Thesis,2008. http://scale.engin.brown.edu/theses/mandle.pdf (December 2016).
[8] Paulo Possa,David Schaillie and Carlos Valderrama, "FPGA-based Hardware Acceleration:A CPU/Accelerator

Interface Exploration," 18th IEEE International Conference on Electronics,Circuits and Systems(ICECS-2011),

2011.
[9] Roland Doba, "Evolutionary On-line Synthesis of hardware Accelerators for Software Modules in Reconfigurable

Embedded Systems," Faculty of Information Technology,Brno University of Technology, Brno Czech Republic,
https://lis.ei.tum.de/fpl2014/papers/t1c_02.pdf (December 2016).

[10] <n.d.>, "EZ-USBFX3TM SuperSpeed USB 3.0 Peripheral Controller Collatoral Guide," Cypress

Semiconductors,2015 http://www.cypress.com/applications/ez-usb-fx3-superspeed-usb-30-peripheral-controller-

collateral-guide (December 2016).

[11] Grant Martin and Gary Smith, "High-Level Synthesis:Past,Present and Future," IEEE Design and Test of

Computers Volume 26,Issue 4,July-Aug.2009,pp 18-25.

[12] Valsaraju H. and Vijayakumar G., "Implementing High Speed USB Functionality with FPGA- and ASIC based

Design," www.eetimes.com/document.asp?doc_id=127915 (October 2016)

[13] L.Sekanina, "Evolable Hardware," Hand Book of Natural Computing, Springer Berlin Heidelberg, 2012.

[14] Rajeshwari Banakar, Stefan Steinke,Bo-Sik Lee,M.Balakrishnan and Peter Marwedel, "Scratchpad memory: A

design Alternative for Cache On-Chip memory in Embedded Systems," CODES‟02 ACM, 2002.

[15] <n.d.>, "Artix-7 T and XT FPGA Data Sheet," http://www.xilinx.com/support/ (March 2017).

[16] Cheng Wang,Sunita Chandrasekaran,Barbara Chapman and Jim Holty, "A Portable OpenMP Runtime Library

based on MCA APIs for Embedded Systems," UInternational Workshop on Programming Models and Applications

for Multicores and manycores(PMAM’13),Proceedings of the 2013,Shenzhen,Guangdong,China, February 2013.

[17] D.Pham and et.al, "The Design and Implementation of a First-Generation Cell Processor," in IEEE International

Solid-State Circuits Conference 2005., Digest of technical Papers,(ISSCC 2005),February 2005.

[18] <n.d.>, "The OpenMP API Specification," www.openmp.org/specifications (March 2017).

[19] Vinayak Pandit, Sanket Dessai and Shilpa Chaudhari “Development of BSP for ARM9 Evaluation Board”,

International Journal of Reconfigurable and Embedded Systems (IJRES), iaes, Vol 3,No23,July 2014, pp 62-75.

http://www.eetimes.com/document.asp?doc_id=127915

