
International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol. 4, No. 3, November 2015, pp. 192~200
ISSN: 2089-4864  192

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

An Efficient approach for Design and Testing of FPGA
Programming using LabVIEW

B. Naresh Kumar Reddy, N. Suresh
Dept. of Electronics and Communication Engineering, NIT Goa, India

Article Info ABSTRACT

Article history:

Received Jun 26, 2015
Revised Sep 9, 2015
Accepted Sep 28, 2015

 Programming of Field Programmable Gate Arrays (FPGAs) has long been
the domain of engineers with VHDL or Verilog expertise. FPGA’s have
caught the attention of algorithm developers and communication researchers,
who want to use FPGAs to instantiate systems or implement DSP algorithms.
These efforts however, are often stifled by the complexities of programming
FPGAs. RTL programming in either VHDL or Verilog is generally not a
high level of abstraction needed to represent the world of signal flow graphs
and complex signal processing algorithms. This paper describes the FPGA
Programs using Graphical Language rather than Verilog, VHDL with the
help of LabVIEW and features of the LabVIEW FPGA environment.

Keyword:

LabVIEW software
FPGA Board

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

B. Naresh Kumar Reddy,
Departement of Electronics and Communication Engineering,
NIT Goa, India.
Email: naresh.klu@gmail.com

1. INTRODUCTION

A. Introduction to FPGA:

Field Programmable Gate Arrays pervasively known as FPGA is an option for usage of advanced
rationale in frameworks [1]. They are pre-assembled chips that might be customized electrically to actualize
any advanced configuration. The main static memory-based FPGA (ordinarily termed as SRAM based
FPGA) isintroduced. This construction modelling took into consideration both logic and interconnection
arrangement utilizing a series of design bits. Xilinx introduced the cluster of configure logic blocks (CLB‘s)
with I/O, Which hold 64 CLB‘s & 58 I/O in First modern Commercial FPGA‘s, FPGAs have become
colossally in many-sided quality [2]. Now a days advanced FPGA can hold roughly 0.33 million rationale
pieces and 1100 I/O. The fundamental building design of FPGA comprises of three real parts: programmable
rationale pieces, which actualize the rationale capacities, programmable directing (interconnects) to execute
these capacities and I/O closes to Make off-chip associations A Design of FPGA architecture is shown in
figure1.

  ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 192 – 200

193

Figure 1. FPGA Architecture

1) Programmable Logic:

FPGA consists of programmable logic block, which is used for essential processing and storing
elements used in various computerized frameworks. The Fundamental element in programmable logic block
holds several types of reconfigurable combinational logic like flip-flops, latches in order to reduce area and
delay cost. There are also advanced FPGAs, which consist of heterogeneous mixture of different blocks such
as dedicated memory blocks, multiplexers etc. and each of them are used for specific functionality.
Designmemory is utilized by entire logic block to control capacity of every component inside the block.

2) Programmable Interconnect:

By programming the FPGAs, we can give connections among various logic blocks and I/O blocks to
finish a client characterized outline. Each FPGA consists of components like pass transistors, multiplexers
and tri-state buffers [2]. Most part of the pass transistors and multiplexers are used to interface logic elements
in logic cluster, while each among three are used for more worldwide directing structures. Some of the
worldwide steering structures, which are used as a part of FPGAs are island style, cellular, bus based and
registered architectures

3) Programmable I/O:

Programmable I/O means a media or mean to interface logic blocks and routing architectures to
variety of outer segments in FPGA. The logic circuitry and I/O pad present in FPGA forms are also in I/O
cell. These cells are present in critical segment of the FPGA and expanded over 40% of FPGAs zone. The
most challenging concern among Programmable I/O block is that there is a great diversity among reference
and supply voltage standards. A standout amongst the most critical choices in I/O structural planning
configuration is the determination of models that will be backed. This includes painstakingly made exchange
off’s on the grounds that, dissimilar to Look Up Tables, which can actualize any advanced capacities, I/O
cells can for the most part execute the voltage guidelines chose by planners [3]. Silicon region needed for I/O
cells will be essentially increased for supporting expansive number of measures and moreover to increase
large number of gauges pin capacitance may increase the number of pins, which will restrain execution.

4) Hardware Description Language (HDL):

Hardware description Languages (HDL) includes VHDL, Verilog, Systemc and Handle-C.Most of
the tie we use Handle C for FPGA programming. VHDL and Verilog are developed for industry measures.
HDL‘s have numerous sellers offering recreation and synthesis tools [4]. Behavioural, RTL and structural
levels of depiction might be utilized between alterably in these dialects. Sytem C is used for displaying
framework level behaviour and have C++ based libraries. As primary language of System C is C++, software
processes can be more effectively demonstrated when compared to conventional HDL, even though System
C is increasing their development but does not reach the development of VHDL or Verilog synthesis
products. Handel-C requires the originator to unequivocally depict parallel handling squares inside a
procedure. It incorporates characteristics for between methodology correspondences.

IJRES ISSN: 2088-8708 

An Efficient approach for Design and Testing of FPGA Programming using LabVIEW (B. Naresh K.R.)

194

In Ref. [3] Alastair M. Smith describes about the applications of geometric programming
configuration of homogeneous FPGA architectures and constructs on an expanding group of work concerned
with demonstrating reconfigurable architectures and presents a full region and postponement model of a
Reconfigurable Devices.

B. Introduction to LabVIEW:

National Instruments provides LabVIEW software (Laboratory Virtual Instrumentation Engineering
Workbench), which provides a platform and development environment using visual programming language.
LabVIEW programming is perfect for any estimation or control framework, and the heart of the NI outline
stage. Coordinating all the apparatuses that specialists and researchers need to assemble for an extensive
variety of uses in drastically less time, LabVIEW is an advanced environment for critical thinking, quickened
gains, and constant development [5], LabVIEW has two sections: the front panel and functional block
diagram. Functional block diagram is a programming area and front panel provides an interface to develop.
By establishing the relations between front panel and the Functional blocks, applications are developed.

LabVIEW programs are termed as Virtual Instruments, on the other hand VI. LabVIEW holds an
exhaustive set of instruments for procuring dissecting, showing, what's more putting away information and
also provide instruments which are used to troubleshoot the code.

When LabVIEW opens, it shows two windows if one wants to write any program in LabVIEW, first
in that program, operation is found out, that operation we draw as Graphical Diagram in Functional block
diagram window then we can give inputs (control) and output (indicator) in front panel, after assigning, we
have to connect through wire from inputs (control) to function and function to output (Indicator). LabVIEW
provides an environment for programming, which is used for undergraduate engineering training [6]. It also
offers help for data acquisition hardware, multitasking, inherent libraries and basic meaning of client
interfaces and is generally utilized within expert building.

2. FPGA PROGRAMMING

FPGA stands for "Field Programmable Gate Array". FPGA essentially consists of large array of
gates which are programmable and can be reconfigured anytime anywhere. "Large array of gates" is an
oversimplified description of FPGA [7]. FPGA is to be sure considerably more perplexing than basic show of
Gates. At the same time the fact is, there are numerous doors inside the FPGA, which could be self-
assertively associated together to make a circuit of your decision. FPGAs are fabricated by organizations like
Xilinx, Altera, Actel and so on. FPGA‘s are in a broad sense like CPLD‘s yet CPLD‘s are little in size and
capacity contrasted with FPGA.

Verilog is a Hardware Description Language (HDL) which could be utilized to portray advanced
circuits in a text based way. We have to compose our system for FPGA utilizing a HDL like Verilog. Before
HDL‘s were famous, specialists made use of everything with schematics. Which are radiantly simple with
little outlines, yet are excruciatingly unmanageable for an expansive design.
Example: Priority encoder In FPGA Programming Using Verilog, VHDL

Priority encoder is a circuit that converts encoded inputs to the binary form. The binary
representation of original number from priority encoder circuit represent from zero to most significant bit. By
acting on highest priority request they control interrupt requests.

An 8-bit priority encoder is circuit which is used for converting an encoded input to a binary
representation.

  ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 192 – 200

195

Figure 2. Basic Diagram & Truth Table

Depending on the no of data input lines the digital encoder produce 2, 3, 4 bit output lines. An n-bit
encoder circuit has 2n input lines and n-bit output and include configurations like 4-to-2, 8-to-3 and 16-to-4
line. A binary equivalent of input value ‗1 ‘is generated by the encoder as output. The binary equivalent thus
generated is available to encode either in decimal or hexadecimal input pattern as (binary coded decimal)
BCD bit.

A) VHDL CODE:
Entity priority-encoder_8-3 is
Port (a: in logic_vector (7 down to 0);
b: out logic_ vector (2 down to 0));
end priority-encoder_8-3;
Architecture Behavioral of priority_encoder_8_3 is
begin
Process (a)
begin
if a(0)='1' then b<="000";
elseif a(1)='1' then b<="001"; elseif
a(2)='1' then b<="010"; elseif
a(3)='1' then b<="011"; elseif
a(4)='1' then b<="100"; elseif
a(5)='1' then b<="101"; elseif
a(6)='1' then b<="110"; elseif
a(7)='1' then b<="111"; else null;
end if;
end process;

B) Verilog Code:
module pri (a,b);
input [7:0] a; output
[2:0] b; reg [2:0]
b;
always@(a)
begin
if (a[0]) b<= 3'b000;
else if (a[1]) b <= 3'b001;
else if (a[2]) b <= 3'b010;
else if (a[3]) b <= 3'b011;
else if (a[4]) b <= 3'b100;
else if (a[5]) b <= 3'b101;
else if (a[6]) b <= 3'b110;

IJRES ISSN: 2088-8708 

An Efficient approach for Design and Testing of FPGA Programming using LabVIEW (B. Naresh K.R.)

196

else if (a[7]) b <= 3'b111;
else
b <= 3'bxxx;
end
end module
In this example, I am explaining Verilog Code in Xilinx as shown as Figure 3

Figure 3. Priority Encoder code in XILINX

After writing the code in Xilinx to synthesize the problem it shows errors/warning (If in this

program having errors/warnings) or Running (it contains perfect code). After competition of synthesize by
click on View RTL Schematics as shown as Figure 4.

Figure 4. RTL Schematics

After checking the errors we can execute the program in Modelsim output waveforms as shown as Figure 5.

  ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 192 – 200

197

Figure 5. Output Waveforms

If one wants program Execute in hardware kit (Spartan 3E FPGA Starter kit, Spartan6 FPGA Kit)
you have to create UCF file by using generating Programming file. User Constrain Files are American
Standard Code for Information Interchange (ASCII) files specifying constraints on the logical design. You
can create these files and enter your I/O interfaces with any text editor Based on hardware kit. If you want
Complete System of Testing FPGA explained [8]. One also uses the Constraints Editor to create constraints
within UCF files. These constraints affect how the logical design is implemented in the target device. These
Files are used to override constraints specified during design entry

The Xilinx software still uses "last constraint wins" much same as HDL/NCF/UCF/PCF processing.
Presently, the UCF files are handled with the request in which they are added to the Task (either in the
Project Navigator or via Tcl command), and it has no bearing on timestamps or the order in which the
documentation were adjusted, automatic generation of VHDL code [9], UML diagrams explained how
synthesize in VHDL [10]

Figure 6. Loading UCF File

After creating UCF file, we have to connect hardware kit. Then upload the program using
DIGILENT software. Based on code Program will be executed

3. PROBLEM DESCRIPTION

In this research we are going to proposed the FPGA Programs using Graphical Language rather than
Verilog, VHDL with the help of LabVIEW.
Based on following points we will execute FPGA program in LabVIEW.
i) Launch LabVIEW software
ii) Draw Graphical diagram in Block Diagram Window
iii) Insert DAQ Assistants for input (Acquire signal) and output (generating Signal)

IJRES ISSN: 2088-8708 

An Efficient approach for Design and Testing of FPGA Programming using LabVIEW (B. Naresh K.R.)

198

iv) Select input port lines and output port lines
v) DAQ Assistant gives single input and single output
With the help of Index array an build array we will design more than one input and one output
vi) Competition of Graphical diagram connect FPGA Kit
vii) Execute the program

LabVIEW programs are also called as Virtual Instruments, or VIs, because it seems & operation like
as physical element or original element, such as oscilloscopes and multimeter’s (based on input oscilloscope
will change). LabVIEW provides a complete set of tools for analysing, displaying, and storing data and for
troubleshooting the code.

When Launch LabVIEW, initially shows ―Getting Startedǁ window. As shown as Figure 7.

Figure 7. Lab VIEW Getting Started Window

To create a new VI, select Blank VI (i.e. LabVIEW programs stored in VI) or to create a new
LabVIEW project and select Empty project.

On clicking the blank VI it shows two windows one is front panel window and the other is block
diagram window. Front panel is the user interface component and the block diagram shows the functionality
of program.

Example: Priority encoder In FPGA Programming Using Graphical Language
When we launch LabVIEW. we have to insert DAQ Assistant in Block diagram window.

Figure 8. DAQ Assistant

By keeping this Function on the block diagram, a new task is created by DAQ Assistant, and for continuous
measurement or generation a While loop is placed around DAQ Assistant.
To make the task globally accessible from any application, you must convert the Express VI to an NI-DAQ
task saved in MAX [11-12].

  ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 192 – 200

199

You can generate NI-DAQmx API code from a DAQ Assistant Express VI. Right click on the DAQ
Assistant Express VI and select generate NI-DAQmx Code from the shortcut menu to generate both
configuration and example code for the task.
In our Example Priority encoder has 8 inputs and 3 outputs then we can use Index array and Build array.
INDEX ARRAY: It contains n-dimensional array. If ndimensional array contains no elements then sub array
present in INDEX ARRAY returns the default value of the defined data type. The number of index inputs in
the array matches the number of dimensions in n-dimensional array.

Index array Function Contains n-Dimension array, index acts as controls and element or sub array
acts as indicator. In our Example 8-bit parity encoder then we can set 8-Dimension array we are giving Index
(0 to 7), Then automatically it generates 8 elements or sub arrays.
BUILD ARRAY: It has only input available upon the placement of function. To add input to the node make a
right click and select the option Add Input from the menu if you wire control references of different classes
to this function.

The Build Array function contain Element and Array acts as Controls appended array acts as
Indicator. In our example 8-bit parity encoder gives 3 outputs then we can set 3 elements in Build array it
Appended array connects to the DAQ Assistant2 data.

After constructing index array and Build array in block diagram window to draw Graphical diagram.
In priority encoder total graphical diagram in Block Diagram window and LabVIEW as shown as figure.

Figure 9. Priority encoder Graphical diagram in LabVIEW

Figure 10. Priority encoder Graphical diagram in Window

IJRES ISSN: 2088-8708 

An Efficient approach for Design and Testing of FPGA Programming using LabVIEW (B. Naresh K.R.)

200

4. RESULT
When we do FPGA Programming in Lab VIEW rather than Verilog or VHDL Based on Procedure

easily we get results rather than Traditional programming Language in priority encoder after competition of
Graphical Diagram we have to connect FPGA Kit and Run the Lab VIEW, it shows input and output in
FPGA Kit and Front panel Window. Result in LabVIEW as shown as figure 11 in LabVIEW.

5. CONCLUSION

LabVIEW FPGA side-steps the need for VHDL or Verilog knowledge and allows novices and
experts alike to take advantage of FPGA hardware. LabVIEW FPGA employs G programming and provides
a high level of abstraction for translating signal processing algorithms to code that can run on hardware. The
environment provides power debug and compilation features to helps ease FPGA application development.

REFERENCES
[1] S. Belkacemi, K. Benkrid, A. Benkrid, “Efficient FPGA hardware development: A multi-language approach”,

Journal of Systems Architecture, 53, (2007), 184–209.
[2] The Xilinx HDL Homepage. Available from: http://www.xilinx.com/labs/lava/index.htm.
[3] George A, Alastair M. Smith, Member IEEE,. Constantinides, Senior Member, IEEE, and Peter Y.K. Cheung,

Senior Member, IEEE, “FPGA Architecture Optimization Using Geometric Programming”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. 29, No. 8, August 2010.

[4] VHDL Language guide,
http://ece.wpi.edu/~wrm/Courses/EE3810/geninfo/Welcome%20%20the%20VHDL%20Language.pdf.

[5] Brunini, Marilza A. Lemos Danilo M. Galdenoro Botura Jr. Marcio A. Marques Luiz Carlos Rosa, “Virtual
Instrumentation: A Practical Approach to Control and Supervision Process”, 2011 International Conference on
Computer Science and Network Technology 978-1-4577-1587-7/11/$26.00 ©2011 IEEE.

[6] B.M. Dunkin and T.L. Schwartz, “Facilitating interdisciplinary hands-on learning using LabVIEW”, Int. J. Eng.
Educ., vol. 16, no. 3, pp. 218–227, 2000.

[7] Aiwu Ruan, Bairui Jie, Li Wan, Junhao Yang, Chuanyin Xiang, Zujian Zhu, Yu Wang, “A bitstream readback-
based automatic functional test and diagnosis method for Xilinx FPGAs”, Microelectronics Reliability (2014).

[8] Ignacio Bravo, Alfredo Gardel, Beatriz Perez, Jose Luis Lázaro, Jorge García, David Salido, “A new approach to
evaluating internal Xilinx FPGA resources”, Journal of Systems Architecture, 57, (2011), 749–760 .

[9] P. Martín a,∗, E. Buenoa, Fco. J. Rodríguez a, O. Machadoa, B. Vuksanovic, “An FPGA-based approach to the
automatic generation of VHDL code for industrial control systems applications: A case study of MSOGIs
implementation”, Mathematics and Computers in Simulation, 91 (2013), 178–192.

[10] Stephen K. Wood, David H. Akehurst, Oleg Uzenkov, W. Gareth J. Howells, and Klaus D. McDonald-Maier, “A
Model-Driven Development Approach to Mapping UML State Diagrams to Synthesizable VHDL”. IEEE
Transactions on Computers, Vol. 57, No. 10, October 2008.

[11] Ho Mann, H.G. Essel, N. Kurz, R.S. Mayer, W. Ott, D. Schall, “The new data acquisition system at GSI”, IEEE
Trans. Nucl. Sci., vol. 43, no. 1, pp. 132–135, Feb. 1996

[12] H Pichlik and R. Jamal, LabVIEW Applications and Solutions. Englewood Cliffs, NJ: Prentice-Hall, 1999, see also
http://www.ni.com/

