
International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol. 2, No. 1, March 2013, pp. 27~48
ISSN: 2089-4864  27

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

Configurable Router Design for Dynamically Reconfigurable
Systems based on the SoCWire NoC

Arash Farhadi Beldachi*, Mohammad Hosseinabady**, Jose L. Nunez-Yanez*
* Department of Electrical and Electronic Engineering, University of Bristol
** Department of Electrical and Electronic Engineering, Queen’s University

Article Info ABSTRACT

Article history:

Received Dec 1, 2012
Revised Jan 22, 2013
Accepted Feb 6, 2013

 New Field Programmable Gate Arrays (FPGAs) are capable of implementing
complete multi-core System-on-Chip (SoC) with the possibility of modifying
the hardware configuration at run-time with partial dynamic reconfiguration.
The usage of a soft reconfigurable Network-on-Chip (NoC) to connect these
cores is investigated in this paper. We have used a standard switch developed
with the objective of supporting dynamically reconfigurable FPGAs as the
starting point to create a novel configurable router. The configurable router
uses distributed routing suitable for regular topologies and can vary the
number of local ports and communication ports to build multi dimensional
networks (i.e., 2D and 3D) with different topologies. The evaluation results
show that the selection of the ideal router is different depending on traffic
patterns and design objectives. Overall, the mesh network with a four local
ports router offers a higher level of performance with lower complexity
compared to the traditional mesh with one local port router.

Keyword:

SoCWire NoC
SoCWire Router
Partial reconfiguration
Configurable router
Evaluation platform

Copyright © 2013 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Arash Farhadi Beldachi,
Department of Electrical and Electronics Engineering,
University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.
Email: arash.beldachi@bristol.ac.uk

1. INTRODUCTION

State of the art FPGAs have large densities capable of implementing complete multi-core System-
on-Chip (SoC) with the possibility of modifying the hardware configuration at run-time with partial dynamic
reconfiguration [1]. The communication needs of these multicore designs create performance bottlenecks and
power, scalability and reliability issues [2].

Network-on-Chips (NoC) have been proposed as an alternative to bus based designs capable of
overcoming these bottlenecks [3]], [[4]. A NoC offers much higher flexibility compared with the traditional
point-to-point communication thanks to the usage of routers which are key components in a NoC [5]], [[6].
Utilizing a NoC in an FPGA-based reconfigurable platform to connect multi-cores is a challenge mainly due
to the lack of a technology independent and easy implementable communication infrastructure capable of
supporting partial reconfiguration.

In this work, the concepts of NoC and dynamic reconfiguration are merged and the possible
synergies investigated. To do this, we have employed SoCWire [7]], [[8] which is a NoC design based on the
ESA SpaceWire standard [9] to design a configurable router named SoCWire Router. We have selected the
SoCWire Switch to create SoCWire Router due to Hot-plug ability to support dynamic reconfigureability,
link error detection and recovery ability in hardware and robustness. In addition, it is technology-
independent, supports different FPGA vendors and its packet level flexibility allows the implementation of a
wide range of communication protocols.

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

28

In this paper, switch means a switch which has been designed for a source path addressing network
and a router is a switch which has been built to support algorithmic routing. The currently available SoCWire
can be used to support various network topologies but with significant addressing overheads for regular
networks. It uses a source path addressing scheme which is efficient for small networks. We have modified
the SoCWire Switch to create a low overhead router called SoCWire Router for regular networks with many
nodes adding logical addressing. In addition, the proposed router can be configured with varying number of
local ports for 2D and 3D networks which make it flexible to use in the different regular topologies. The
proposed modified router (i.e., SoCWire Router) keeps the ESA SpaceWire standard and SoCWire features.

We have created different configurations of the SoCWire Router to design a number of equivalent
networks with a fixed number of computing nodes. To verify the capabilities of the networks, we have
designed an on-chip performance evaluation platform, examined the partial reconfiguration ability by using
the equivalent networks as the dynamic and rest of the performance evaluation platform as the static part and
investigated the equivalent networks performance with realistic and randomized traffic patterns in a physical
prototype.

The rest of the paper is organised as follows: Section 2 reviews previous research, briefly introduces
the SoCWire NoC in the background sequel and motivation for the extension of the SoCWire Switch to
SoCWire Router is presented in this section. Section 3 introduces the proposed configurable router and
investigates different SoCWire Router configurations and the configuration we have used in this paper. In
section 4 a number of equivalent networks based on the different configurations are built. In addition, our on-
chip performance evaluation platform which is designed to measure the equivalent networks performance
under a synthetic and realistic traffic loads is introduced in this section. Section 5 investigates the effect of
adding different buffer sizes to the SoCWire communication ports. The equivalent networks are evaluated in
section 6 with the partial configuration technique.Finally, Section 7 concludes the paper.

2. LITERATURE REVIEW, BACKGROUND AND MOTIVATION

This section reviews previous research, explains briefly the SoCWire NoC architecture and presents
the extension motivation of the SoCWire Switch to SoCWire Router.

2.1. Previous Research

There have been several proposed reconfigurable SoC with different communication infrastructures
and we are going to discuss some of them.

ReCoBus [10] introduced a technique to generate On-Chip buses suitable for dynamic partially
reconfigurable platforms.

The Artemis NoC [11] is an infrastructure that supports specific reconfiguration services which
explores the Hermes NoC [12] infrastructure by adding a set of services. One of the services is adding an
interface between reconfigurable IP and router which is two macros to remove the possible produced glitches
effects in the interface between the under reconfiguration IP and the rest of the device and may produce false
data into the Network which causes malfunctions or circuit blocking. The second service is discarding the
transmitted packets to an area which is under reconfiguration because it is not clear the packets are targeted
to the previous or next configuration of that area.

Dynamic Network-On-Chip (DyNoC) [13]], [[14] proposed to provide the end user with a valid
framework to support flexible inter-cores communication. The purpose of the DyNoC architecture is to make
the cores reachable at any instant of time and from any module within the system via switching elements
surrounding the cores. The dynamic capabilities of DyNoC are due to its support to dynamic module
placement. The DyNoC consist of a two dimensional mesh interconnected routers that have a defined
position in the reconfigurable system, and therefore they can be overwritten during the reconfiguration
process if more room is needed for loading a new core. The overwritten routers are deactivated and packets
are routed through the routers that are surrounding the newly loaded module, using SXY which is a modified
XY routing algorithm to dynamically bypass the possible obstacles. The DyNoC architecture and the
surrounding routing algorithm have been validated with a light controller control system in a 3x3 DyNoC
mapped on a Virtex II FPGA. In contrast the SoCWire Router use the regular XY routing algorithm for two
dimensional meshes, easily supports different regular topologies and in this work the NoC based on the
different configuration of the SoCWire Router is mapped as a single block to a centralized area of the device
with processing elements connected in the periphery. This approach is effective at using the current design
flows of partial reconfiguration since it is possible to use the available FPGA resources optimally. If the
number of local/communication ports for multidimensional networks change in a router the wiring
infrastructure will change as well and this can be achieved by letting the P&R FPGA tools manage the
resources in the assigned communication area without imposing excessive constraints.

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

29

Communication Unit Network (CuNoC) [15] presented as an extension to DyNoC. This work does
not use any buffering mechanism at the input ports and uses a priority to the right rule in the concurrent
incoming scenario. The same as DyNoC provides the possibility of introducing a new module, mapping it to
one or more tiles of the mesh and the same drawback as the DyNoC in comparison to our work.

Configurable Network-On-Chip (CoNoChi) [16] provides a flexible and dynamically reconfigurable
infrastructure for dynamically reconfiguration SoCs. This work is based on the idea that switches can be also
removed and or added to the network like the modules. CoNochi consists of switches with four bidirectional
links. These links can be used for connections to adjacent switches or for connecting a hardware module to a
switch. CoNochi makes it possible to dynamically insert/remove the modules and switches to/from the
network. The main drawback is that the length between switches might dynamically change and cause link
delay. Also, the defined grid FPGA distribution implies that all the unused areas of the grid have to be
configured to connect at least default communication lines.

Reference [17] proposed a run-time reconfigurable NoC framework. This NoC framework can
dynamically create/delete express lines between SoC components (implementing dynamically circuit-
switching channels) and perform run-time NoC topology and routing-table reconfigurations to handle
interconnection congestion, with a very limited performance overhead. This works reveals the employment
of a set of specific NoCs instead of a single static NoC and makes it possible to improve the performance and
consumed power. The communication infrastructure in this work does not provide the flexibility and
scalability which can be provided by a SoCWire Router based NoC.

The work at [18] proposed a multiplayer approach to interconnect modules. The switch multiplexers
are reconfigured to connect different modules by employing the fine grain partial reconfiguration and change
the network topology via interconnecting available network signals. A mix bus-ring communication has been
mapped in the architecture by switching four bit multiplexers implemented with four input LUTs. There is no
more information available regarding further implementation and this communication infrastructure is not
scalable for a many cores SoC.

Modarressi et al. [19] presented a reconfigurable architecture for NoC on which arbitrary
application-specific topologies can be implemented. When a new application starts, the inter-router
connections in the NoC change to some predefined pattern depends on the application traffic pattern and
changes the topology. This NoC architecture requires many dynamic configuration switches which increases
by the size of the network.

There are some academic and commercial designs based on the SpaceWire standard such as
SpaceWire Light [20], SpaceWire (SpW) [21], SpaceWire UK [22], 4links drivers products [23], Atmel
AT7910E [24], SoCWire and GRSPWROUTER [25]. SoCWire, SpaceWire (SpW), and SpaceWire Light are
open source and available online. The key point is that all of the works based on the SpaceWire standard
have designed a routing switch which is not suitable for regular networks because of the lack of algorithmic
routing. To the best of our knowledge, this is first work:

a) To propose a configurable router based on the SpaceWire standard for the SoCWire NoC which
supports partial reconfiguration systems and deployed it in the construction of different mesh
topologies with varying configurations.

b) To employee a configurable router which supports partially reconfiguration systems, develop a
performance evaluation platform and investigate NoC performance with realistic and
randomized traffic patterns in a physical prototype.

2.2. Background

As SoCWire has been used and modified in this paper, in the sequel, we explain briefly the
overview of the SoCWire NoC architecture [8]. The ESA SpaceWire standard is a well-established standard
and a proven interface implementing a serial link bi-directional asynchronous communication protocol. The
standard includes features that make it especially suitable for Space applications such as link initialization
and reconnection following a disconnection, error detection and recovery and hot-plug capability. The
SoCWire is a NoC design based on the SpaceWire standard has been developed by IDA, Technical
University Braunschweig, with the objective of supporting dynamically reconfigurable FPGAs in future
Space applications which is based on the standard features of SpaceWire while increasing its throughput by
using parallel interfaces. The SoCWire verification results have shown Partial Reconfigurable Modules
(PRMs) in the applied test cases do not have an effect on the host system and SoCWire is suitable for
dynamic partial reconfiguration applications [26].

The SoCWire uses the following control characters for flow control: Flow Control Token (FCT),
End of Packet (EOP), and Error End of Packet (EEP) and Escape Character (ESC) form the higher level
control code. FCT indicates that there is space for 8 more normal characters in the receiver buffer and EOP
clarifies the end of a packet. EEP determines the packet is terminated prematurely due to a link error. ESC is

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

30

used to form the high level control code which is 8-bit in length like NULL and Time-Code. NULL (ESC +
FCT) keeps a link active, and Time‐Code (ESC + data character) distributes system time information over the
SpaceWire network [8].

It is possible to employ one single SoCWire Switch and connect it to the arbitrary numbers of nodes
or connect the SoCWire Switches together to build different topologies. Figure 1 shows an example of
SoCWire architecture network with 9 nodes and 5 SoCWire Switches. The SoCWire switch uses wormhole
routing and a time-slot based round robin mechanism. When a data frame is sent, the destination port in the
switch is determined from the header. After that, the destination header is deleted and the remainder of the
packet is transferred to the output port. In wormhole switching packets are split into smaller units of flow
control called flits. In a subsequent routing step, after deleting the current destination header, the next flit in
the header contains the destination address for the next stage. The SoCWire has a scalable data word width to
support medium to very high data rates and each flit has two parts: the data word and one data control flag.
The data control flag indicates if the current character is a data (0) or control character (1). SoCWire packet
level is highly flexible and it is possible to implement a wide range of protocols. Figure 2 shows the format
of a packet which contains Destination Address, Payload and End Of Packet/Error End of Packet (EOP/EEP)
flits. The Destination Address can be one or more than one flits depending on the network topology and it is
required to send packets over a SoCWire network to a specific target. The Payload contains the user data. A
normal packet is completed with an EOP marker. The EEP marker indicates an erroneous packet which will
be rejected by the target.

Figure 1. Example of an SoCWire architecture network

Figure 2. The packet format for SoCWire

The SoCWire NoC has two main components: the SoCWire CODEC and the SoCWire Switch. The
SoCWire CODEC connects a node or host system to the SoCWire network. Figure 3 shows the SoCWire
CODEC structure which has five main modules: state machine, receiver, receiver FIFO, transmitter and
transmitter FIFO.

The State machine controls the operation of the SoCWire CODEC responses to errors and user
requests. The receiver decodes the link data and sends the decoded user data to the receiver FIFO. All read
operations are operated by this module. Link errors are detected and forwarded to the state machine. The
receiver FIFO receives the user data from the receiver and transfers it to the host interface. It checks the
outstanding counter and controls the Flow Control Token (FCT) handling. FCT is a control character and
when space for eight more data characters in the receive buffer is available then a FCT is transmitted to allow
eight data characters to be transferred. The receiver has a dual port RAM to store received data. The

SoC W ire
C O D EC

N ode 1

SoC W ire
Sw itch 0

SoC W ire
Sw itch 1

SoC W ire
Sw itch 2

SoC W ire
Sw itch4

SoC W ire
Sw itch3

SoC W ire
C O D EC

N ode 2

SoC W ire
C O D EC

N ode 3

S
oC

W
ire

C
O

D
E

C

N
ode 4

S
oC

W
ire

C
O

D
E

C

N
ode 5

S
o

C
W

ire

C
O

D
E

C

N
od

e
 0

SoCWire
CODEC

Node 6

SoCWire
CODEC

Node 7

S
oC

W
ir

e

C
O

D
E

C

N
o

d
e

8

FPG A

…Data n EOP/EEP Data 1

Tail (1flit) Payload (1:n flit(s)) Header (1: m flit(s))

Destination
Address m

Data 0 Destination
Address 1

Destination
Address 0

…

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

31

transmitter FIFO transmits the user data from the host interface to the transmitter. It controls the credit flow
and checks the credit counter to send the appropriate amount of user data. A credit-based flow control is
implemented to avoid buffer overflows and cases data loss [8].

Figure 3. The SoCWire CODEC

Figure 4 shows the structure of an SoCWire Switch with six ports. It enables the transfer of packets
arriving at one link interface to another link interface on the switch. SoCWire Switch has two main modules:
internal SoCWire CODECs and a routing switch. SoCWire CODECs inside the switch are the same number
of ports and the routing switch has an entrance unit that analyzes incoming packets, verifies the validation of
the header, processes header deletion and passes the packet to another unit called the matrix. The matrix is a
crossbar and manages the payload transfer to the destination port using cell modules. Each cell module
represents an interconnection between two ports.

Figure 4. A SoCWire Switch with 6 ports

2.3. Motivation
This sequel presents the motivation for the extension of the SoCWire Switch to the SoCWire

Router. A NoC Routing algorithm can be implemented as source or distributed routing algorithm. In source
routing, the source node computes the path addresses and stores it in the packet header. The header which
contains the path addresses uses bandwidth because it must be transmitted through the network. In distributed
routing, the packet header only contains the destination address and each router computes the next output link
address to move the packet towards its destination. Algorithmic routing uses a combinational logic circuit
that computes the output port to be used as a function of the current and destination nodes and the status of
the output ports [27].

S
oC

W
ire

 N
et

w
or

k

T ransm itter

R eceiver

Transm itter
F IFO

R eceiver
F IFO

State
M achine

A
 n

od
e/

ho
st

 s
ys

te
m

tx(da taw idth+1:0)

dat_d in (dataw idth :0)

data_nw rite

data_fu ll

tx_va lid

rx(da taw idth+1:0)

rx_valid dat_dout(da taw idth:0)

da ta_em pty

data_nread

socw _en

socw _dis

active

S o C W ire C O D E C 0

P o rt 0

P
o rt 1

P
ort 2

Port 3

P
or

t 4
P

o r
t 5

E n tra n c e

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e ll C e ll

C e ll C e ll

C e ll C e ll

C e ll C e ll

C e ll C e ll

C e ll C e ll

M a trix

S
oC

W
ire C

O
D

E
C

 1
S

oC
W

ire C
O

D
E

C
 2

SoCWire CODEC 3

S
oC

W
ire

 C
O

D
E

C
 4

S
oC

W
ire

 C
O

D
E

C
 5

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

32

Figure 5 depicts an example which shows the H.264 decoder with low resolution (h.264.dl)
application task graph which has been extracted from reference [28] and Figure 6 shows a 4×4 mesh network
on which the H.264 is mapped on. In this scenario, each node sends one packet with 7 flits data, 32 bits each
flits. We consider a routing switch which has a header, data and end-of-packet flit and the
header contains one address flit or a number of path addresses flits for consequent addressing inside the mesh
network. There are 22 packet transactions inside the network which translates into 22×7=154 data flits. The
required number of header flits can be calculated for each transaction with the formula:

 Number of header ϐlits ൌ ݀ሺ݅, ݆ሻ ൅ 1; (1)

Which ݀ሺ݅, ݆ሻ is the distance between router i and router j:

d ሺi, jሻ ൌ | X ሺdሻ െ Xሺcሻ | ൅ |Yሺdሻ െ Y ሺcሻ |; (2)

And the sum of the required numbers of flits for all 22 transactions is 118. In addition, each packet

has one end-of-packet flit which is 22 end-of-packets in overall. Therefore, 140 flits are required as the
header addresses and tails to transfer 154 data flits which represents an overhead of 47.62%.

Figure 5. The h.264.dl task graph Figure 6. A 4×4 mesh network which this applicant
is mapped on this network

On the other hand if we design a router which uses a combinational logic circuit to compute the
output port to be used as a function of the current and destination nodes and the status of the output ports,
there is only one flit needed as the header to route from any source to any destination. In this scenario, for all
22 transactions, 22 flits as destination addresses and 22 flits as end-of-packets are needed. Therefore, 44 flits
are required header addresses and tails to transfer 154 flits of data which means that the overhead is reduced
to 22.2%.

3. PROPOSED CONFIGURABLE ROUTER

The SoCWire Router has the standard features available as part of SoCWire and the SpaceWire
standards. Figure 7 shows the configurable SoCWire Router architecture. This router has five main
components: internal SoCWire CODECs, Entrance, Matrix, Cells and input buffers.

The SoCWire Router CODEC is a circuit that interfaces asynchronously with another CODEC
located in the processing node. It is the same as the original SoCWire CODEC. The SoCWire Router has an
address which is at maximum equal to 32 bits. When the data arrives inside the router ports via CODECs
from local port(s) or buffers from communication ports, the entrance unit analyses incoming packets and
makes routing decisions by comparing the packets header to the router address using a routing algorithm and
passes the packet to the SoCWire Router matrix which is a crossbar to send the packet to the destination port.
The routing algorithm varies depending on the configuration but in this work, it is derived from the X-Y
routing algorithm which is a fixed shortest-path routing algorithm and has many advantages such as
simplicity and power-efficiency. There is no deadlock scenario or the need to reorder flits. The data width of

a

l

c d f geb h j ki

NI
PE0

R0 (a) R1(b) R2 (c) R3 (d)

NI
PE1

NI
PE2

NI
PE3

NI
PE4

R4 (e) R5 (f) R6 (g) R7 (h)

NI
PE5

NI
PE6

NI
PE7

NI
PE8

R8 (i) R9 (j) R10 (k) R11(l)

NI
PE9

NI
PE10

NI
PE11

NI
PE12

R12 R13 R14 R15

NI
PE13

NI
PE14

NI
PE15

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

33

all ports is set to 33 bits, 32 data bits and 1 control bit. The control bit indicates if the current character is a
data or control character.

Figure 7. The Configurable SoCWire Router architecture

The packet structure used by SoCWire Router is shown in Figure 8 that reduces the size of the
header which is a destination address to 33 bits. The minimum flits for each packet is three when only one
data flit is present.

Figure 8. The packet format for SoCWire Router

This router can be configured with different number of local and communication ports to build 2D
and 3D networks. For example, one possible configuration can be a SoCWire Router with five input and
output ports (local, north, east, south and west) which has only one SoCWire CODEC in the local input port
and buffers in communication ports. We call this configuration, base SoCWire Router. Each port can
send/receive data to/from other ports concurrently and in cases where two or more ports want to send data to
a port, a round robin arbiter is employed to avoid data collisions ensuring that only one sender has access to
the port.

The Xilinx XC5VLX110T has been selected in this work for the implementation. We have selected
bufferless communication ports for base SoCWire Router and in section 5 we will investigate the affect of
the adding buffers of different sizes on performance and required area. Table 1 displays the base SoCWire
Router utilization summary. The small area occupied by the SoCWire Router means that most of the device
resources remain available to the user logic. The results are based on an implementation frequency of 100
MHz which is been used in all the system configurations to normalize the clock rate.

Table 1. Base SoCWire Router Utilization Summary
Logic Utilization Used Available Utilization
Slice Registers 424 69120 0.61%
Slice LUTs 1277 69120 1.85%
Block RAM/FIFOs 1 148 0.68%

C O D E C 2

C
O

D
E

C
 0

C O D E C 1

L
oc

al
 P

or
t

0

L o ca l P
o r t 1

L o c a l P o r t 2

...

R ou ter P or t 0

E n tr a n ce

M a tr ix

C e ll ...

...

...

...

... . . .

.. .

...............

L o ca l P or t nC O D EC n

. ..

C e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e llC e ll C e ll C e ll

C e ll

C e ll

C e ll

C e ll

C e ll

B u ffer s

R o u te r P o r t 1

B u ffer s

R ou te
r P

or t 2
B u ffe

rs

R
ou

te
r

P
or

t
m

B
u

ff
er

s

…Data n EOP/EEP Data 1

Tail (1flit) Payload (1:n flit(s)) Header (1flit)

Destination
Address

Data 0

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

34

An initial experiment has evaluated the best (non-blocking) and worst (blocking) cases for the base
SoCWire Router to evaluate its performance. In the best case, the SoCWire Router is tested so that there is no
blocking taking place at any of the output channels. When the inputs arrive to the five input ports of the
router, the router is able to service them at the same time and send them out to the output ports. The data
from the local port is routed to the east port, data from the north port goes to the south port, data from east
port is sent to the west port, data from south port goes to the local port and the data from west port is sent out
to the north port simultaneously. The worst case is that all the packets arrive at the different input ports and
request the same output port. One output port cannot service all of them simultaneously and this leads to
blocking.

Figure 9. Base SoCWire Router throughput for non-
blocking case

Figure 10. Base SoCWire Router throughput for
blocking case

Figure 9 and Figure 10 shows the throughput for the tested non-blocking and blocking cases packets
ranging in size from 3 to 500 flits. The overall trend shows that throughput increases with the rise in the
number of flits with saturation clearly evident as packet sizes reached 50 flits and 150 flits for the worst and
best case respectively. The performance of the base SoCWire Router is 378 Mbytes/s and 1.81 Gbytes/s for
the worst and best cases respectively. The average latency increases linear with the number of flits in the
packet. In addition, there is a linear relationship between the average latency and number of flits in the
packet. The slope of the line is 2 and 10 for best and worst cases, respectively.

Figure 11. The header format of the SoCWire Router

There are two types of configuration for the SoCWire Router: the SoCWire Router with varying
number of local ports for 2D and 3D networks. The SoCWire Router has the generic parameters to configure
the number of local ports as well as the number of the network dimension type (2D/3D) and the network
topology selection between mesh and torus to implement. Figure 11 shows the header flit of the SoCWire
Router which is the destination address. This flit is 33 bits and has 6 parts: X, Y and Z dimensions of the
destination address which are 8 bits each, local port number address which is 7 bits, dimension type (2D/3D)
which is 1 bit to clarify the dimension of the networks and 1 bit the data control flag. The 2D/3D bit value is
equal to “0”, the X and Y sections are used to determine the destination router address inside the network and
the local port section determines the related destination local port when the network is 2D. In the 3D
networks scenario, the 2D/3D bit value is equal to “1”, the X, Y and Z sections are used to determine the
destination router address inside the network and the local port section determines the related destination
local port.

2D/3D

Header (1flit)

X addressY addressZ address

8 bits8 bits8 bits1 bit 7 bits1 bit

The data
control flag Local port

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

35

3.1. SoCWire Router with Varying Number of Local Ports for 2D Networks
It is possible to configure the SoCWire Router with an arbitrary number of local ports for 2D

networks although in this research we have limited the research to five characteristic router configurations:
the base SoCWire Router which has one local port, SoCWire Routers with 2, 4 and 8 local ports for the 2D
mesh topology and SoCWire Router with 1 local port for the 2D torus topology. We have employed the
TRANC [29] routing algorithm which is a novel systematic approach for designing deadlock-free routing
algorithms for torus NoCs. Figure 12 displays the routing pseudo code for the SoCWire Router with two
local ports for 2D mesh network which is very similar for the SoCWire Routers with 4 and 8 local ports.

Figure 12. The routing pseudo code for the SoCWire Router with two local ports for 2D mesh network

Table 2. The Multi local ports SoCWire Router for 2D networks utilization summary
Logic Utilization 2D-Mesh-1 LP 2D-Mesh-2LP 2D-Mesh-4 LP 2D-Mesh-8 LP 2D-Torus-1 LP
Slice Registers 424 765 1458 3000 1235
Slice LUTs 1277 2166 3671 7761 2461
Block RAM/FIFO 1 2 4 8 1

Table 2 shows the utilization summary for the SoCWire Routers which are configured with 2, 4 and

8 local ports for 2D mesh and 1 local port for 2D torus topology when the buffer sizes in the communication
port are equal to zero. This table reveals that by adding local ports the occupied area increases linearly.

3.2. SoCWire Router with Varying Number of Local Ports for 3D Networks

We have created two different 3 dimensional (3D) SoCWire Routers with one and two local ports.
The 3D SoCWire Routers employ the XYZ routing algorithm.

Figure 13. The routing pseudo code for the 3D SoCWire Router with one local port

ΔX= destination router address X – current router X
ΔY= destination router address Y – current router Y
ΔZ= destination router address Z – current router Z
If ΔX==0 && ΔY==0 && ΔZ==0
direction= Local port
else if ΔX>0
direction= East
else if ΔX<0
direction= West
else if ΔY>0
direction= South
else if ΔY<0
direction= North
 else if ΔZ>0
direction= Up
else if ΔZ<0
direction= Down

ΔX= destination router address X – current router X
ΔY= destination router address Y – current router Y
If ΔX==0 && Δy==0 && destination local port ==0
direction= Local port 0
If ΔX==0 && Δy==0 && destination local port ==1
direction= Local port 1
else if ΔX>0
direction= East
else if ΔX<0
direction= West
else if ΔY>0
direction= South
else if ΔY<0
direction= North

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

36

Figure 13 displays the routing pseudo code for the 3D SoCWire Router with one local port and
Table 3 reveals the utilization summary of implementing 3D SoCWire Routers with 1 and 2 local ports when
the buffer sizes in the communication port are equal to zero. This table shows the 3D router with 1 local port
occupies 65.23% more LUTs than the base SoCWire Router with one local port and the 3D SoCWire Router
with two local ports consumes 28.86% more LUTs than the one with one local port.

Table 3. The 3D SoCWire Router Utilization Summary
Logic Utilization 3D-Mesh- 1LP 3D-Mesh- 2LP
Slice Registers 572 928
Slice LUTs 2110 2719
Block RAM/FIFO 1 2

4. EQUIVALENT NETWORKS AND PERFORMANCE EVALUATION PLATFORM

This section presents seven equivalent networks based on different SoCWire Router configurations
and introduces our on-chip performance evaluation platform which is designed to measure the equivalent
networks performance under a synthetic and realistic traffic loads.

4.1. Equivalent networks

In this sequel, the configured SoCWire Routers with 1, 2, 4 and 8 local ports and 3D SoCWire
Routers with 1 and 2 local ports are used to build 7 equivalent networks with a common number of
computing nodes of 16. Table 4 introduces the 7 equivalent networks specification with the resulting
topologies shown in Figure 14 to Figure 20.

Table 4. Equivalent Networks Specification and Related Figure Numbers
Network Dimension Topology Local ports Figure
2D-Mesh-1LP 4×4×1 Mesh 1 Figure 14
2D-Mesh-2LP 2×4×1 Mesh 2 Figure 15
2D-Mesh-4LP 2×2×1 Mesh 4 Figure 16
2D-Mesh-8LP 1×2×1 Mesh 8 Figure 17
3D-Mesh-1LP 4×2×2 Cube 1 Figure 18
3D-mesh-2LP 2×2×2 Cube 2 Figure 19
2D-Torus-1LP 4×4×1 Torus 1 Figure 20

Figure 14. 2D-mesh-1LP Figure 15. 2D-mesh-2LP

NI
PE0

R0 R1 R2 R3

NI
PE1

NI
PE2

NI
PE3

NI
PE4

R4 R5 R6 R7

NI
PE5

NI
PE6

NI
PE7

NI
PE8

R8 R9 R10 R11

NI
PE9

NI
PE10

NI
PE11

NI
PE12

R12 R13 R14 R15

NI
PE13

NI
PE14

NI
PE15

NI
PE0

R0

NI
PE1

NI
PE2

R1

NI
PE3

NI
PE4

R2

NI
PE5

NI
PE6

R3

NI
PE7

NI
PE8

R4

NI
PE9

NI
PE10

R5

NI
PE11

NI
PE12

R6

NI
PE13

NI
PE14

R7

NI
PE15

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

37

Figure 16. 2D-mesh-4LP Figure 17. 2D-mesh-8LP

Figure 18. 3D-mesh-1LP Figure 19. 3D-mesh-2LP

Figure 20. 2D-torus-1LP

4.2. NoC Performance Evaluation Platform
We have designed and implemented a NoC performance evaluation platform on the FPGA to verify

and evaluate the created networks around the Leon3 SoC available in the GRLIB IP Library [30]. The Leon3
is a SPARC-compatible softcore processor which is developed by AeroFlex-Gaisler and interfaces to the
AMBA bus architecture. The IP blocks for the AMBA bus, Leon3 processor and other SoC peripherals are

NI
PE0

R0

PE2
NI

PE3

NI
PE1

NI

NI
PE4

R1

PE6
NI

PE7

NI
PE5

NI

NI
PE8

PE10
NI

PE11

NI
PE9

NI

NI
PE12

R3

PE14
NI

PE15

NI
PE13

NI

R2

NI

R0

NI

NI

NI NI

NI

NI

NI

PE2

PE3

PE4

PE5PE6

PE7

PE0

PE1
NI

R1

NI

NI

NI NI

NI

NI

NI

PE10

PE11

PE12

PE13PE14

PE15

PE8

PE9

NI
PE0

R0 R1 R3

NI
PE1

NI
PE2

NI
PE3

NI
PE4

R4 R5 R6 R7

NI
PE5

NI
PE6

NI
PE7

NI
PE8

R8 R9 R10

NI
PE9

NI
PE10

NI
PE11

NI
PE12

R13 R14

NI
PE13

NI
PE14

NI
PE15

R2

R11

R12 R15

R0

N
I

P
E

1

N
I

P
E

0

R1

N
I

P
E

3

N
I

P
E

2

R3

N
I

PE
10

N
I

P
E

11

R2

N
I

P
E

8

N
I

P
E

9

R4

N
I

P
E

5

N
I

P
E

4

R5

N
I

P
E

7

N
I

P
E

6

R7

N
I

P
E

14

N
I

P
E

15

R6

N
I

P
E

12

N
I

PE
13

NI
PE0

R0 R1 R2 R3

NI
PE1

NI
PE2

NI
PE3

NI
PE4

R4 R5 R6 R7

NI
PE5

NI
PE6

NI
PE7

NI
PE8

R8 R9 R10 R11

NI
PE9

NI
PE10

NI
PE11

NI
PE12

R12 R13 R14 R15

NI
PE13

NI
PE14

NI
PE15

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

38

available in the GRLIB IP library. An additional IP block added to the GRLIB library is the reconfiguration
controller [31] which is used to load new store bitstreams in external DDR memory into the tiles without host
intervention via the ICAP hardware unit (Internal Configuration Access Port) which allows direct access to
device fabric. This is the reasonable approach to follow since the FPGA device does not have enough on-chip
memory to do this and the available on-chip memory is required for the data processing itself. This external
memory provides a good trade-off between memory size, transfer overheads and on-chip resource utilisation.

Figure 21 presents the architecture of this performance evaluation platform. We have considered the
SoCWire Network as the dynamic part to partially reconfigure the different equivalent networks for
evaluation and the rest of the system as the statically configured. This allows the communication interconnect
to map as a single block to a centralized area of the device which is connected to the evaluation platform.
This approach is effective at using the current design flows of partial reconfiguration since it is possible to
use the available FPGA resources optimally. If the number of local/communication ports change in a router
the wiring infrastructure will change as well and this can be achieved by letting the P&R FPGA tools manage
the resources in the assigned communication area without imposing excessive constraints.

Our performance evaluation system is based on different traffic types representing synthetic and
realistic application traffic patterns. The evaluation platform has two phases: initialization and execution.

Figure 21. The performance evaluation platform for SoCWire networks

4.2.1. Initialization Phase
In the initialization phase, for the random traffic pattern case, Leon3 writes 32 bit words to the dual

port RAM. This 32 bit word contains 16 bits to activate the Packet Generators (PGs), 8 bits to define the
number of packets which should be generated by the PGs and 8 bits to determine the size of these packets in
flits. The transmitter (Tx) reads the initialization word and sends it to each PG. If the traffic pattern belongs
to a real application, Leon3 writes 64 bits to the dual port RAM for each transaction between 2 nodes. These
64 bits contain sequence number, execution time, dependencies, source and destination node addresses and
data size. Sequence number determines the order of commands execution for each node. Execution time is
the computation time required for a node to provide processed data to the network, dependencies identify the
required data which should be received from one or several nodes to start the computation, source and
destination address determine the sender and receiver address. Packet size shows the size of data in flits
which is going to be sent. Transmitter (Tx) reads all of the initialization commands and sends them to the
related Packet Generators (PGs). In this step, PGs are initialized and the execution phase starts.

4.2.2. Execution phase

In the execution phase, if the traffic pattern is a random traffic, PGs start to generate frames. Each
frame has a header which is a flit and determines the destination address, 1 or more data flits depending on
the initialization and a tail flit to clarify the EOP. The destination address is generated by a random number

LEON 3
Processor

Tx

PRs

JTAG
Dbg link

JTAG

AHB
Controler

Memory
Controler

CODECs

AMBA AHB

SDRAM

SRAM

I/O

PROM

Rx

PGs

 SoCWire Network

Dual Port RAM

ICAP

Reconfiguration
Controller

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

39

generator which is a Linear Feedback Shift Register (LFSR) counter [32]. When a PG generates and sends a
packet, it waits for a certain amount of time to generate and send the next packet. These timing intervals
between sending packets can be fixed or randomly generated. When the traffic pattern is real application
traffic, PGs start to generate frames based on the commands located in the dual port RAM. The frames
format is the same as the random traffic frames.

In addition; each packet has a start sending time stamp and source node address as well. A CODEC
connects a PG to the SoCWire Router. When a node receives a packet, it will pass the packet to the Packet
Receptor (PR) through the CODEC. The PR compares the destination address in the header of the received
packet to the node address and if they are the same, PR will extract the source address and sender timing
stamp. PR passes the source and destination address and source and destination timing stamp to the Receiver
(Rx). Rx receives all the information from PRs and writes them in the dual port RAM. Finally, Leon3 reads
the execution results which have been written in the dual port RAM for further processing and reconfigure
the dynamic part with another network bitstreams for evaluation. Table 5 shows the complexity of the
LEON3 and our evaluation platform.

Table 5. LEON3 and Performance Evaluation Platform Complexity
Logic Utilization LEON3 system Evaluation Platform
Slice Registers 4505 20402
Slice LUTs 8963 34097
Block RAM/FIFOs 21 48

5. EVALUATION OF THE MESH NETWORK WITH DIFFERENT BUFFER SIZES IN THE
COMMUNICATION PORTS

In this section, we are going to evaluate the 2D-Mesh-1LP network with different buffer sizes in the
SoCWire Router communication ports.

5.1. Performance

Performance is analyzed in terms of throughput and latency after implementing the system in the
target board running at a normalized frequency of 100MHz. The throughput shows the efficiency of
delivering packets in the network and depends on topology and routing policy which is XY for all the 2D
topologies and XYZ for the 3D topologies to be able to perform a fair comparison. The time required for
traversing the network is referred to as the latency of a network. The average latency is the mean of the
latencies of all received packets in the topology [33].

We have created a dynamic area in the device to map the 2D-Mesh-1LP network with different
buffer sizes in the communication ports and have investigated the performance with four different synthetic
traffic patterns. The rest of the evaluation platform is statically configured.The resulting device layout is
shown in Figure 22 with the central area occupy by the communication network clearly shown. The size of
the partial bitstream for the communication network is 1.7 Megabyte for the larger configuration.

Figure 22. The resulting device layout with the central area occupy by the communication network

5.1.1. Uniform traffic pattern

The first traffic pattern considered is the uniform traffic pattern. In this pattern, each node sends 100
packets, with 15 flits each, to random targets which are the other nodes. There is a random timing interval
between the sending packets which indicate the average time between data transfer requests. We have

SoCWire Network
(Dynamic part)

Performance evaluation platform
(Static part)

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

40

evaluated the networks with different ranges of random firing intervals. A lower value indicates a more
heavily loaded NoC.

Figure 23. The throughput for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the uniform traffic pattern

Figure 24. The average latency for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the uniform traffic pattern

As it can be seen in the Figure 23 and Figure 24 which are the throughput and average latency for

this traffic pattern, adding the buffers to the communication ports helps to increase the SoCWire network
throughput and decrease the average latency in a heavy traffic pattern when the intervals are 0-63 cycles.
This trend changes after 64 cycles in which the buffers in the communication ports do not help the
performance and bufferless communication ports has a better average latency. In addition, the size of added
buffer to the communication ports has a direct effect on the networks performance when there is a heavy
traffic pattern especially when the intervals are 0-15 cycles. The numbers in the figures (i.e., 16, 32, 64, 128
and 512) show the depth of the communication ports buffer with a width constant of 32 bit.

5.1.2. One Hot Spot Traffic Pattern

The second traffic pattern is a concentrated node traffic pattern with 1 hot spot. In this traffic
pattern, nodes 0-14 send 100 packets, 15 flits each, to the target node which is node 15. Similar to the first
pattern, there are random timing intervals between the sending of packets. Figure 25 and Figure 26 show the
throughput and average latency for this traffic pattern. Overall the bufferless configuration decreases the
average latency and adding buffers to the communication ports does not help to improve the performance.

Figure 25. The throughput for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the one hot spot traffic
pattern

Figure 26. The average latency for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the one hot spot traffic
pattern

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

41

5.1.3. Two Hot Spots Traffic Pattern
The third traffic pattern is a concentrated node traffic pattern with 2 hot spots.

Figure 27. The throughput for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the two hot spots traffic
pattern

Figure 28. The average latency for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the two hot spots traffic
pattern

In this traffic pattern, nodes 0-15 sends 100 packets, 15 flits each, to the target nodes which are
nodes 0 and 15. There are random timing intervals between the sending of packets like the other traffic
patterns. Figure 27 and Figure 28 which are the throughput and average latency for this case, reveal adding a
small size of the buffers(16 and 32) to the communication ports helps to reduce the average latency when the
traffic pattern is heavy and medium(0-383 cycles intervals) but does not change the overall throughput.

5.1.4. Unloaded Traffic Pattern

The fourth traffic pattern is an unloaded traffic pattern. In this traffic pattern, node 0 sends 100
packets, 15 flits each, to the random target nodes which are nodes 1-15. There are random timing intervals
among the sending of packets. Figure 29 and Figure 30 display the throughput and average latency for this
traffic pattern. Figure 29 shows adding buffers to the communication ports increase the throughput in the
heavy traffic scenario when the intervals are 0-15 cycles. Figure 30 reveals when the traffic is not heavy and
the intervals are larger than 16 cycles, the bufferless reduce the average latency.

Figure 29. The throughput for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the unloaded traffic
pattern

Figure 30. The average latency for the 2D-Mesh-1LP
network with different buffer sizes in the

communication ports with the unloaded traffic
pattern

5.2. Complexity
Table 6 displays the utilization summary for the 2D-Mesh-1LP with seven different buffer sizes in

the communication ports. As it can be seen in this table, 4x4-bufferless network decreases the occupied LUTs

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

42

and block of RAM/FIFOs by 30.1% and 33.3% respectively compare to the 512 depth buffer scenario.
Adding depper buffers to the communication ports increases the occupied area and requires more Block
RAM/FIFOs. For example, using 512 depth buffer instead of 16 increases the occupied area by 8.16%.

Overall, the performance evaluation results reveal that adding the buffers to communication ports
help the SoCWire Router networks performance when the intervals are 0-63 cycles and the traffic pattern is a
heavy traffic. When the traffic is not a heavy traffic pattern, adding buffers does not help. In addition, adding
buffers increase the complexity at least by 30%. We have choosen the bufferless to explore in the next
section because although buffers help the performance in a heavy traffic pattern, they increase complexity
considerable.

Table 6. The Utilization Summary for the 2D-Mesh-1LP with Different Seven Buffer Sizes in the
Communication Ports

Networks Slice Registers Slice LUTs Block RAM/FIFOs
4x4-bufferless 6064 13678 16
4x4-buffer depth 16 10913 18046 48
4x4- buffer depth 32 11188 18238 48
4x4- buffer depth 64 11425 18366 48
4x4- buffer depth 128 11681 18814 48
4x4- buffer depth 256 11964 18823 48
4x4- buffer depth 512 12193 19518 48

6. EVALUATION OF THE EQUIVALENT NETWORKS

In this section we have created a dynamic area in the device to map the communication network and
have investigated network performance under different topology configurations. The rest of the evaluation
platform is statically configured. The resulting device layout is shown in Figure 31 with the central area
occupy by the communication network clearly shown. The size of the partial bitstream for the
communication network is 1.4 Megabytes for the larger configuration.

Figure 31. The resulting device layout with the central area occupy by the communication network

6.1. Performance
We have considered five different traffic patterns to analyse the performance of the different

network configurations. The first four are synthetic traffic patterns and the fifth is a realistic traffic pattern.
We have considered a single implementation frequency which is 100MHz to investigate the efficiency of the
different topologies at transferring data bypassing implementation effects that generate different maximum
frequencies.

6.1.1. Uniform Traffic Pattern

The first traffic pattern considered is the uniform traffic pattern. In this pattern, each node sends 100
packets, with 15 flits each, to random targets which are the other nodes. There is a random timing interval
between the sending packets. We have evaluated the networks with different ranges of random firing
intervals.

Figure 32 and Figure 33 display the throughput and average latency for this scenario. As it can be
seen in these figures, the torus network is the best choice for 0-63 cycles intervals and the 2D-Mesh-4LP for
64-1023 cycles intervals to increase the throughput and reduce the average latency compared to the other

SoCWire Network
(Dynamic part)

Performance evaluation platform
(Static part)

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

43

networks. The worst case performance corresponds to the 2D-Mesh-8LP due to the high congestion on the
single link between the two routers.

Figure 32. The networks throughput for the uniform
traffic pattern

Figure 33. The networks average latency for the
uniform traffic pattern

6.1.2. One Hot Spot Traffic Pattern

The second traffic pattern is a concentrated node traffic pattern. In this traffic pattern, nodes 0-14
send 100 packets, 15 flits each, to the target node which is node 15. Similar to the first pattern, there are
random timing intervals between the sending of packets.

Figure 34. The networks throughput for the one hot
spot traffic pattern

Figure 35. The networks average latency for the one
hot spot traffic pattern

Figure 34 and Figure 35 show the throughput and average latency for this traffic pattern. In this
scenario, the best choice is the 2D-Mesh-2LP for 0-63 cycles intervals and the 2D-Torus-1LP, 2D-Mesh-4LP
and 3D-Mesh-2LP for 64-1023 cycles intervals. The worst choice is the 2D-Mesh-8LP for both throughput
and latency.

6.1.3. Two Hot Spots Traffic Pattern

The third traffic pattern is a concentrated node traffic pattern with 2 hot spots. In this traffic pattern,
nodes 0-15 sends 100 packets, 15 flits each, to the target nodes which are nodes 0 and 15. There are random
timing intervals between the sending of packets like the other traffic patterns. Figure 36 and Figure 37 show
the throughput and average latency for this traffic pattern. Figure 37 reveals that the 2D-Torus-1LP, 3D-
Mesh-2LP and 2D-Mesh-4LP are the best options to reduce the average latency compared to the other
networks. The 2D-Mesh-8LP is the worst choice with the highest latency.

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

44

Figure 36. The networks throughput for the two hot
spots traffic pattern

Figure 37. The networks average latency for the two
hot spot traffic pattern

6.1.4. Unloaded Traffic Pattern
The fourth traffic pattern is an unloaded traffic pattern. In this traffic pattern, node 0 sends 100

packets, 15 flits each, to the random target nodes which are nodes 1-15. There are random timing intervals
among the sending of packets. Figure 38 and Figure 39 display the throughput and average latency for this
traffic pattern. These figures show that the torus network and 2D-Mesh-4LP offer the best performance and
the lower latency compared to the other networks. The worst choices for both throughput and latency are the
2D-Mesh-1LP and the 3D-Mesh-1LP.

Figure 38. The networks throughput for the unloaded
traffic pattern

Figure 39. The networks average latency for the
unloaded traffic pattern

6.1.5. Realistic Application Traffic Pattern
As a real case, we have employed a realistic traffic pattern which is a H.264 decoder with low

resolution (h.264.dl) application from the MCSL (Multi-constraint system-level) benchmark suite to compare
the networks [28]. The MCSL contains a set of traffic patterns based on real applications that have been
adjusted to the make them compatible with the evaluation platform. We have separated the communication
between and computation in the nodes and only used the communication between the nodes.

Figure 40 and Figure 41 display the normalized throughput and average packet latency when the
clock rate of the network and computing nodes is 100MHz and Figure 42 and Figure 43 show the normalized
throughput and average packet latency when there are two different frequency islands for the network and
computing nodes which are 100 and 500MHz respectively under h.264.dl application. Figure 40 and Figure
42 show that the normalized throughput for this realistic application is largely constant and independent of
the topology with a small benefit for the 2D-Torus-1LP, 2D-Mesh-4LP and 2D-Mesh-8LP.On the other hand

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

45

Figure 41 and Figure 43 show that the 2D-Torus-1LP and 2D-Mesh-4LP networks offer a significant
reduction in latency and are the best choices.

Figure 40. Normalized throughput for mesh network
under h.264.dl real application (network and

computing nodes frequency=100MHz)

Figure 41. Normalized average latency for mesh
network under h.264.dl real application (network and

computing nodes frequency=100MHz)

Figure 42. Normalized throughput for mesh network
under h.264.dl real application (network

frequency=100MHz and computing nodes
frequency=500MHz)

Figure 43. Normalized average latency for mesh
network under h.264.dl real application (network

frequency=100MHz and computing nodes
frequency=500MHz)

The traffic pattern for this application and many other realistic applications generate low traffic in

the network due to the processing time needed in the computing nodes before a result packet is ready to be
injected in the network. These means that the timing intervals between the sending of packets tend to be quiet
large. Overall, the experiment reveals that conclusions found in the literature based on synthetic and
randomized traffic patterns should be re-examined with traffic profiles obtained from real applications.

6.2. Complexity and Implementation Results

We have measured the occupied area of each network separately to compare. In addition, the
XPower tool, which is the Xilinx power analysis tool, has been used to estimate the consumed power of the
networks. We have considered the hierarchy power, which includes DCM power, BRAM power, signal
power and logic power, to compare the networks. Table 7 shows the complexity of the equivalent networks,
consumed power and maximum operation frequency of the networks. This table reveals that if the objective
is to optimize the NoC from an area point of view the 2D-Mesh configuration with 4 local ports is the most
area efficient while the 2D-Torus with 1 local port is the most area intensive. The torus is a popular topology
that reduces congestion in the central part of the network delivering good performance but it produces a high
overhead in terms of resources utilization when implemented on FPGAs as seen in the table. In addition, this
table reveals that for the fixed number of the nodes, adding the local ports to the SoCWire Router and 3D
SoCWire Router increases the consumed power. Therefore, the power consumption has a direct relationship

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

46

with the local ports in the SoCWire Router and the regular mesh network with 1 local port SoCWire Router,
consumes less power than the 3D and torus networks while the 3DMesh-2LP and 2D-Torus-1LP have similar
power requirements. The maximum operation clock frequency for the networks is highly dependent on the
selection of the network area in the FPGA. We have examined this by changing the dynamic area to different
places. In this scenario, adding more local ports or multidimensional decrease the maximum achieved clock
frequency. The torus network achievable clock frequency is degraded due to the need to create long links
between the border nodes but in this case is 6.4% reduction compared to the 2D-Mesh-1LP due to the size of
the mesh network and mapping the networks are mapped as a single block.

Table 7. The Complexity, Power Consumption and Maximum Achieved Clock Frequency for the Networks

Networks
Power
(mW)

Max. Clock frequency
(MHz)

Slice LUTs Slice Registers
Block RAM/

FIFOs
2D-Mesh-1LP 50.58 120.584 13678 6064 16
2D-Mesh-2 LP 51.78 110.314 10976 5400 16
2D-Mesh-4 LP 53.47 104.646 10908 5243 16
2D-Mesh-8 LP 63.26 102.208 11147 5351 16
3D-Mesh-1 LP 53.34 111.086 15444 6728 16
3D-Mesh-2 LP 53.75 107.631 11657 5774 16
2D-Torus-1LP 56.24 112.854 16680 6784 16

Table 8. The Evaluation Results Summary
Traffic
pattern

Intervals
(Cycles)

Performance Area Power

Uniform 0-63 2D-Torus-1LP 2D-Mesh-4LP 2D-Mesh-1LP
Uniform 64-511 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP
Uniform 512-1023 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP
1-hot-spot 0-63 2D-Torus-1LP, 2D-Mesh-4LP ,3D-Mesh-2LP 2D-Mesh-4LP 2D-Mesh-1LP
1-hot-spot 64-511 2D-Torus-1LP, 2D-Mesh-4LP ,3D-Mesh-2LP 2D-Mesh-4LP 2D-Mesh-1LP
1-hot-spot 512-1023 2D-Torus-1LP, 2D-Mesh-4LP ,3D-Mesh-2LP 2D-Mesh-4LP 2D-Mesh-1LP
2-hot-spots 0-63 2D-Torus-1LP, 2D-Mesh-4LP ,3D-Mesh-2LP 2D-Mesh-4LP 2D-Mesh-1LP
2-hot-spots 64-511 2D-Torus-1LP, 2D-Mesh-4LP ,3D-Mesh-2LP 2D-Mesh-4LP 2D-Mesh-1LP
2-hot-spots 512-1023 2D-Torus-1LP, 2D-Mesh-4LP ,3D-Mesh-2LP 2D-Mesh-4LP 2D-Mesh-1LP
Unloaded 0-63 2D-Torus-1LP, 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP
Unloaded 64-511 2D-Torus-1LP, 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP
Unloaded 512-1023 2D-Torus-1LP, 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP
h.264.dl 0-63 2D-Torus-1LP, 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP
h.264.dl 64-511 2D-Torus-1LP, 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP
h.264.dl 512-1023 2D-Torus-1LP, 2D-Mesh-4LP 2D-Mesh-4LP 2D-Mesh-1LP

After performing an analysis of the observed performance and complexity results it is possible to
conclude that the 2D-Mesh-8LP is not a good choice in general. The best overall performance is achieved by
the Torus configuration but the complexity costs are high. The complexity of the 2D-Mesh-2LP is
approximately 20% lower than the traditional 2D-Mesh-1LP but its performance is also lower specially for
the uniform traffic case. The 3D configurations perform similarly among them but the complexity of the 3D
with 1 local port is considerably higher than the equivalent with 2 local ports. Overall, the 2D-Mesh-4LP
offers better level of performance to the traditional 2D-Mesh-1LP with lower complexity so it could prove a
suitable choice for FPGA-based NoCs built around the SoCWire standard. Table 9 summarizes the
evaluation results in function of how heavily loaded the NoC is (intervals), the traffic patterns expected in the
application, occupied are and power consumption.

7. CONCLUSION
This paper has presented the configurable SoCWire Router as an extension to the SoCWire NoC

which is a robust, fault tolerant and reconfiguration friendly NoC. The base SoCWire Router uses 1277 LUTs
when it is configured with 1 local and 4 communication ports for the mesh topology. The performance of this
router in the best and worst cases is 1.81 Gbytes/s and 378Mbytes/s respectively with a clock frequency of
100MHz. A number of SoCWire Routers with varying number of local ports for 2D and 3D networks have
been investigated from a performance, power and area points of view. To thoroughly test the proposed
configurations a performance evaluation platform based on the Gaisler Leon3 processor has been developed.
The evaluation platform implements a number of equivalent networks with 16 processing nodes with partial
reconfiguration technique. The equivalent networks are evaluated with five different traffic patterns to

IJRES ISSN: 2089-4864 

Configurable Router Design for Dynamically Reconfigurable Systems based on… (Arash Farhadi Beldachi)

47

investigate the ideal network and the ideal configuration for the SoCWire Router. The evaluation results
show that the selection of the ideal router is different for traffic patterns based on synthetic or real
applications. The selection of the ideal router also depends if the design goal is to optimize for power, area,
performance or a combination of these but overall, the mesh network with four local ports router is a good
candidate to employ instead of the traditional mesh network with one local port router. In addition, adding
buffers to communication ports helps the network performance when there is a heavy traffic pattern but it
does not help in other cases and significant more resources. These conclusions indicate that the partial
reconfiguration features available in modern FPGAs could be used to deploy different interconnects at run-
time depending on active application and design goal. Further work will consider more realistic traffic
patterns derived from real applications and implementation effects under hard area and performance
constraints. The current work is based on a Xilinx V5 LX110T that with 69K logic cells does not offer
enough resources to build larger systems but with new FPGAs such as the latest Xilinx Virtex-7 with
millions of logic cells, it will be possible to create very large communication networks with hundreds of
processing elements and study the scalability of this method in these cases. This is part of our future work.

REFERENCES
[1] Osterloh B, Michalik H, Habinc SA, Fiethe B. Dynamic Partial Reconfiguration in Space Applications.

NASA/ESA Conference on Adaptive Hardware and Systems (AHS). San Francisco, California. 2009; 1: 336-343.
[2] Jongman Kim. A Comprehensive Approach to Design Network-On-Chip Architectures for Soc/Multicore Systems.

Ph.D. Dissertation. Pennsylvania State University, University Park, PA, USA. AAI3266141. 2007.
[3] Benini L, De Micheli G. Networks on chips: a new SoC paradigm. Computer. 2002; 35(1): 70-78.
[4] Dally WJ, Towles B. Route packets, not wires: on-chip interconnection networks. Proceedings Design Automation

Conference. 2001; 1:684- 689.
[5] Rijpkema E, et al. Trade-offs in the design of a router with both guaranteed and best-effort services for networks on

chip. IEE Proceedings Computers & Digital Techniques. 2003; 150(5): 294-302.
[6] Lee H G, et al. On-chip communication architecture exploration: A quantitative evaluation of point-to-point, bus,

and network-on-chip approaches. ACMTransactions on Design Automation of Electronic Systems. 2007; 12(3): 1-
20.

[7] Osterloh B, Michalik H, Fiethe B. SoCWire: A Robust and Fault Tolerant Network-on-Chip Approach for a
Dynamic Reconfigurable System-on-Chip in FPGAs. 22nd International Conference on Architecture of Computing
Systems(ARCS’09). Delft, Netherlands. 2009; 50-59.

[8] System-on-Chip Wire, source codes and documents. IDA, 5 May 2009. Available: www.socwire.org. [Accessed 25
December 2012].

[9] ECSS, Space Engineering: SpaceWire-Links, nodes, routers, and networks. ESA-ESTEC, Noordwijk, Netherlands.
2008. ECSS-E-50-12C.

[10] Koch D, Haubelt C, Teich J. Efficient Reconfigurable On-Chip Buses for FPGAs. Field-Programmable Custom
Computing Machines, (FCCM '08). Palo Alto, California. 2008; 287-290.

[11] Möller L, et al. A NoC-based infrastructure to enable dynamic self reconfigurable systems. 3rd International
Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC’07). Montpellier, France. 2007.

[12] Moraes F, et al. HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks on Chip.
INTEGRATION, The VLSI Journal. 2004; 38(1): 69-93.

[13] Bobda C, Ahmadinia A. Dynamic Interconnection of Reconfigurable Modules in FPGA. IEEE Design & Test of
Computers-Special Issue Networks on Chip. 2005; 2(25): 443-451.

[14] Bobda C, et al. DyNoC: A dynamic infrastructure for communication in dynamically reconfugurable devices.
International Conference on Field Programmable Logic and Applications (FPL’05). Tampere, Finland. 2005; 153-
158.

[15] Jovanovic S, et al. CuNoC: A Scalable Dynamic NoC for Dynamically Reconfigurable FPGAs. Field
Programmable Logic and Applications (FPL’07). Amsterdam, The Netherlands. 2007; 753-756.

[16] Pionteck T, et al. Communication Architectures for Dynamically Reconfigurable FPGA Designs. IEEE
International Parallel and Distributed Processing Symposium (IPDPS’07). 2007; 1-8.

[17] Rana V, et al. A Reconfigurable Network-on-Chip Architecture for Optimal Multi-Processor SoC Communication.
16th Annual IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Rhodes, 2008; 321:
326.

[18] Hubner M, et al. Run-time reconfigurable adaptive multilayer network-on-chip for FPGA-based systems. IEEE
International Symposium on Parallel and Distributed Processing (IPDP). Miami, Florida. 2008:1-6.

[19] Modarressi M, Tavakkol A, Sarbazi-Azad H. Application-Aware Topology Reconfiguration for On-Chip
Networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2011; 19(11): 2010-2022.

[20] Spacewire_light. Available: http://opencores.org/project. [Accessed 25 December 2012].
[21] Spacewire. Available: http://opencores.org/project. [Accessed 25 December 2012].
[22] SpaceWire Switch Core. Available: http://www.spacewire.co.uk. [Accessed 25 December 2012].
[23] SpaceWire products and service. Available: http://www.4links.co.uk/spacewire-products. [Accessed 25 December

2012].

  ISSN: 2089-4864

IJRES Vol. 2, No. 1, March 2013 : 27 – 48

48

[24] ATMEL, 2008, AT7910E. Available: www.atmel.com/dyn/resources/ prod_documents/doc7796.pdf [Accessed 25
December 2012].

[25] GRSPWROUTER SpaceWire Routing Switch. Available: http://www.gaisler.com/ . [Accessed 25 December
2012].

[26] Osterloh B, et al. Architecture verification of the SoCWire NoC approach for safe dynamic partial reconfiguration
in space applications. NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Anaheim, California.
2010; 1-8.

[27] Flich J, Rodrigo S, Duato J. An Efficient Implementation of Distributed Routing Algorithms for NoCs.
International Symposium on Networks-on-Chip – NOCS. Newcastle upon Tyne, UK. 2008; 87-96.

[28] Weichen Liu, et al. A NoC Traffic Suite Based on Real Applications. IEEE Computer Society Annual Symposium
on VLSI (ISVLSI). Chennai, India. 2011: 66-71.

[29] Rahmati D, et al. Power-efficient deterministic and adaptive routing in torus networks-on-chip. Microprocessors
and Microsystems - Embedded Hardware Design. 2012; 36(7): 571-585.

[30] Leon3 Processor. Available: http://www.gaisler.com/ . [Accessed 25 December 2012].
[31] Nabina A, Nuñez-Yañez JL. Dynamic Reconfiguration Optimisation with Streaming Data Decompression. Field

Programmable Logic and Applications (FPL’10). Milano, Italy. 2010: 602-607.
[32] George M, Alfke P. Linear Feedback Shift Registers in Virtex Devices. Xilinx application note Xapp210.
[33] Dally, William J, Towles B. Principles and Practices of Interconnection Networks. Morgan Kaufmann Publishers,

Inc, 2004.

BIOGRAPHIES OF AUTHORS

Arash Farhadi Beldachi received his B.Sc. in Electrical and Electronic engineering from Azad
University, Saveh, Iran, in 2001, and his M.Sc. in Electronic engineering from Iran University of
Science & Technology (IUST), Tehran, Iran, in 2007. He is currently a Ph.D. student in the
Department of Electrical and Electronic engineering at Bristol University, UK, under supervision
of Dr. Jose Luis Nunez-Yanez, working on Reconfigurable Network-On-Chip (RNoC).

Mohammad Hosseinabady received the B.S. degree in electrical engineering from the Sharif
University of Technology, Sharif, Iran, in 1992, the M.S. degree in electrical engineering and the
Ph.D. degree in computer engineering from the University of Tehran in 1995 and 2006,
respectively. He is currently a research fellow with the University of Queen’s University,
Belfast, working System-on-Chip Architectures and Programmable Systems (SoC).

Jose Luis Nunez-Yanez received the B.S. degree from Universidad de La Coruna, La Coruna,
Spain, and the M.S. degree from Universidad Politécnica de Cataluña, Barcelona, Spain, in 1993
and 1997, respectively, both in electronics engineering, and the Ph.D. degree in the area of
hardware architectures for high-speed data compression from Loughborough University,
Loughborough, U.K., in 2001. During 2005 he worked at STMicroelectronics, Italy after
receiving a Marie Curie fellowship in the area vector architectures for video processing and in
2010 he worked ARM Ltd, Cambridge with a Royal Society fellowship in the area of system-
level energy estimation and modelling. He is currently a Senior Lecturer with the Department of
Electronic Engineering, University of Bristol, U.K., His current research interests include the
areas of data and video compression, reconfigurable and energy efficient computing and brain
modelling.

