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 Graphical Processing Units (GPUs) have become an integral part of today’s 
mainstream computing systems. They are also being used as reprogrammable 
General Purpose GPUs (GP-GPUs) to perform complex scientific 
computations. Reconfigurability is an attractive approach to embedded 
systems allowing hardware level modification. Hence, there is a high demand 
for GPU designs based on reconfigurable hardware. Stream processor 
consists of clusters of functional units which provide a bandwidth hierarchy, 
supporting hundreds of arithmetic units. The arithmetic cluster units are 
designed to exploit instruction level parallelism and subword parallelism 
within a cluster and data parallelism across the clusters.For decreasing the 
area and power, a single controller is used to control data flow between 
clusters and between host processor and GPU. The designed of stream 
processor unit has been carried out in Verilog on Altera Quartus II and 
simulated using ModelSim tools. The functionality of the modelled blocks is 
verified using test inputs in the simulator.The simulated execution time of 8-
bit pipelined multiplier is 60 ps and 100 ns for 8-bit pipelined adder while 
operating at 90 MHz.
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1. INTRODUCTION 

As 3D graphics are becoming more vital in our lives, there is a need of fast graphics processors. 
With the introduction of the GPU, computationally intensive transform and lighting calculations were 
offloaded from the CPU onto the GPU—allowing for faster graphics processing speeds. This means all 
scenes increase in detail and complexity without sacrificing performance. For fast-paced games and other 
signal processing tasks, the computer has to go through this process about tens to hundreds of billions of 
times per second. Without a graphics card to perform the necessary computations, the workload would be too 
much for the computer to handle. To achieve these computation rates, current media processors use special 
purpose architectures customized to one specific application. Field Programmable Gate Arrays (FPGAs) are 
basically pieces of programmable logic. FPGAs have become more affordable they have found their way into 
more and more designs.Mapping a components of graphic processor on to FPGA is a challenging task and 
leds to new arena of research in reconfigurable computing. 

Stream processors are signal and image processors, which offer both efficiency and 
programmability. Stream processors have efficiency comparable to ASICs, while being programmable in a 
high-level language. Streaming processors have been widely developed for many applications. The streaming 
processor can also be implemented as a reconfigurable streaming processor that can be reconfigured for 
several scientific computing applications (Rajagopal, et al. 2004). 
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Stream processors in GPUs can process vertices, pixels, geometry or physics—they are effectively 
general purpose floating-point processors. Most signal-processing applications are naturally expressed in this 
style. Stream processors are highly efficient computing engines that perform calculations on an input stream, 
while producing an output stream that can be used by other stream processors. Stream processors can be 
grouped in close proximity, and in large numbers, to provide immense parallel processing power. 

Generally, specialized high-speed instruction decodes and execution logic is built into a stream 
processor, and similar operations are performed on the different elements of a data stream. On-chip memory 
is normally used to store output of a stream processor, and the memory can be quickly read as input by other 
stream processors for subsequent processing. SIMD (single instruction/multiple data) instructions can be 
implemented across groupings of stream processors in an efficient manner, and massively parallel stream 
processor clusters are well-suited for processing graphics data streams. 
 
 
2. STREAM PROCESSOR ARCHITECTURE  

Streaming processors have been widely developed for many applications. Some of them are 
implemented for example as an application-specific streaming processor. A few application examples can be 
found such as streaming processors for fluid dynamic computations based on lattice Boltzmann method and 
for accelerating ray tracing traversal algorithm in a graphic rendering application. The streaming processor 
can also be implemented as a reconfigurable streaming processor that can be reconfigured for several 
scientific computing applications. 

A few floating-point-based processors that also support streaming computations have been 
developed so far. Intel Corporation has designed a 6.2-GFlops Floating-Point Multiply-Accumulator 
(FPMAC). The FPMAC processors are dedicated for a Teraflops Multicore System, which could run Tera-
floating-point operations per second by interconnecting 80 FPMAC cores through a 2D mesh 8×10 on-chip 
network. Another floating-point-based processor that supports streaming computations is SPE (Synergistic 
Processing Element) processor from IBM Corporation. 

Graphic Processing Units generally used for graphics data processing in multimedia applications can 
be classified as a streaming processor. The clock frequency of GPUs is frequently slower than premium 
CPUs. However, since GPUs are commonly interconnected each other to run graphic processing algorithms 
in parallel, GPUs can even provide better performance. The GPU such as NVIDIA Tesla architecture consists 
of 8 Texture/Processor Clusters (TPCs), where each TPC unified several streaming processors. The NVIDIA 
Tesla is a scalable array processor that can be programmed in C or via graphics APIs (Application-
Programming Interfaces) to run parallel multithreaded computational models (Glaskowsky 2009). 

 
2.1. BANDWIDTH HIERARCHY 

In this model, the three-tiered storage bandwidth hierarchy enables the architecture to provide the 
instruction and data bandwidth necessary to efficiently operate ALUs in parallel. The hierarchy consists of a 
streaming memory system, a 128KB stream register file, and direct forwarding of results among arithmetic 
units via local register files. This hierarchy can be used to exploit the parallelism and locality of streaming 
media applications (NVIDIA 2008). 
 
2.2. STREAM REGISTER FILE 

The SRF is a 128KB memory organized to handle streams. The SRF can hold any number of 
streams of any length. The only limitation is the actual size of the SRF. Streams are referenced using a stream 
descriptor, which includes a base address in the SRF, a stream length, and the record size of data elements in 
the stream.An array of 22 64-word stream buffers is used to allow read or write access to 22 stream clients 
simultaneously (NVIDIA 2006). The clients are the units which access streams out of the SRF, such as the 
memory system, network interface, and arithmetic clusters. The internal memory array is 32 words wide, 
allowing it to fill or drain half of one stream buffer every two cycles, providing a total bandwidth of 
25.6GB/s for all 22 streams. 

Each stream client may access its dedicated stream buffer every cycle if there is data available to be 
read or space available to be written. The eight stream buffers serving the clusters are accessed eight words at 
a time, one word per cluster. The eight stream buffers serving the network interface are accessed two words 
at a time (NVIDIA 2006). The other six stream buffers are accessed a single word at a time. The peak 
bandwidth of the stream buffers is therefore 86 words per cycle, allowing peak stream demand to exceed the 
SRF bandwidth during short transients. Stream buffers are bidirectional, but may only be used in a single 
direction for the duration of each logical stream transfer. 
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2.3. MEMORY SYSTEM  
As described above, all memory references are made using stream load and store instructions that 

transfer an entire stream between memory and the SRF. This stream load/store architecture is similar in 
concept to the scalar load/store architecture of contemporary RISC processors. 

 
2.4. CLUSTER ARRAY  

Each input of every functional unit in the cluster is fed by a separate local register file (LRF). These 
local register files store kernel constants, parameters, and local variables, reducing the required SRF 
bandwidth. Each cluster has 17 LRFs (4 32-entry and 13 16-entry LRFs) for a total of 272 words per cluster 
and 2176 words across the eight clusters (NVIDIA 2006). Each local register file has one read port and one 
write port. The 15 local register files collectively provide 54.4 GB/s of peak data bandwidth per cluster, for a 
total bandwidth of 435 GB/s within the cluster array. 

Additional storage is provided by a 256-word scratch-pad register file. It can be indexed with a base 
address specified in the instruction word and an offset specified in a local register. The scratch-pad allows for 
coefficient storage, short arrays, small lookup tables, and some local register spilling.The intercluster 
communication unit allows data to be transferred between clusters over the intercluster network using 
arbitrary communication patterns. 

The adders and multipliers are fully pipelined and perform single precision floating point arithmetic, 
32-bit integer arithmetic and 16-bit or 8-bit parallel subword integer operations. The divide/square root unit is 
not pipelined and operates only on single precision floating point and 32-bit integers (NVIDIA 2006). The 
divider can support two simultaneous operations, with latencies ranging from 16-23 cycles depending on the 
operation and data type. The 48 total arithmetic units, six units replicated across eight clusters, provide a peak 
computation rate of over 16GOPS for both single precision floating point and 32-bit integer arithmetic 
(NVIDIA 2006). 

 
2.5.  NETWORK INTERFACE  

The network interface connects the SRF to four bidirectional links (400MB/s per link in each 
direction) that can be configured in an arbitrary topology to interconnect processors. A send instruction 
executed on the source processor reads a stream from the SRF and directs it onto one of the links and through 
the network as specified by a routing header. At the destination processor, a receive instruction directs the 
arriving stream into the SRF. The send and receive instructions both specify a tag to allow a single node to 
discriminate between multiple arriving messages. 

Using the stream model, it is easy to partition an application over multiple processors using the 
network. To partition an application across two processors, the application is adapted by dividing the stream-
level code across the two processors, inserting a send instruction at one end, and inserting a receive 
instruction at the other. 

 
2.6.  STREAM CONTROLLER   

Host processor issues stream-level instructions to stream processor with encoded dependency 
information. The stream controller buffers these instructions in a scoreboard and issues them when their 
resource requirements and dependency constraints are satisfied. 

 
2.7.  HOST INTERFACE    

The host interface allows a stream processor to be mapped into the host processor's address space, 
so the host processor can read and write stream memory. The host processor also executes programs that 
issue the appropriate stream-level instructions to the stream processor. These instructions are written to 
special memory mapped locations in the host interface. 

 
 

3.  REQUIREMENT ANALYSIS 
The requirement analysis for the stream processor architecture modelling includes on FPGA devices 

and its peripherals. Since a stream processor and texture filtering unit needs to be verified, the output can be 
monitored on a terminal for the multiprocessing tasks. In order to debug the processor and monitor the 
processor state a ‘JTAG Debugger’ must be present in the system, which should be controlled by a processor 
debugging module and be able to switch between multiple processors.  

 
3.1.   DESIGN OF STREAM PROCESSOR  

The design is based on Harvard architecture, which defines physically separated memories for 
program instructions and data. This implies that the widths of data busses may differ per memory type. This 
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is especially useful for VLIW architectures, because to issue very long instruction words from instruction 
memory. 

The stream controller is designed with following four stages fetch, decode, execute and write back. 
General-purpose Register (GR) file with 64 32-bit registers and a Branch Register (BR) file with eight 1-bit 
registers are used within the each arithmetic cluster. 

The fetch unit of the stream controller fetches a VLIW instruction from the attached host processor, 
and passes it on the internal decode unit. In this stage, the instruction is being split. Also, the register contents 
used as operands are fetched from the register files. The actual operations take place in the execute unit of 
stream controller, parallel microcontroller and SRF unit. Arithmetic, multiplication, and division/square root 
operations in arithmetic clusters are performed in the execute stage. This stage is designed parametric, so that 
the number of arithmetic clusters could be adapted. Stream processor should have exactly one 
microcontroller and SRF unit, so these units are designed outside the parametric stream controller. All jump 
and branch operations are handled by the microcontroller, and all data memory load/store operations are 
handled by the SRF unit. To ensure that all results to the GR, BR, SRF and the internal Program Counter 
(PC) are written at the same time per instruction, all write activities are performed in the write back unit of 
stream controller. The functionality of the blocks is explained below: 

 
3.2.   STREAM REGISTER FILE (SRF)  

SRF effectively isolates the arithmetic clusters from the memory system, making streaming 
processor load/store architecture for streams. Two arithmetic clusters and a stream controller are connected to 
the SRF. The arithmetic clusters consume data streams from the SRF, process them, and return their output 
data streams to the SRF. The two clusters operate simultaneously on interleaved data records transferred from 
the SRF, allowing two elements to be processed in parallel. Each arithmetic cluster contains three adders, two 
multipliers, and one divide/square root unit. These units are controlled by statically scheduled VLIW 
instructions issued by the controller. 

The flow of data in the SRF is explained in the flow chart shown in Figure 1. The data flows from 
SRF to C (Mux_3) only when there is a positive edge clock pulse and if the write signal is high which is 
issued by the B (stream controller). The address register itself stores the address of the next instruction; the 
present instruction address is stored in SRF that is sent by A (Address_Register). 

 
3.3.   STREAM CONTROLLER   

Stream Controller unit is implemented in the streaming processor to control the processor 
configuration and the flow of streaming computations. The processor configuration and the flow of the 
streaming computations are controlled by fetching and executing instruction vectors stored in the instruction 
memory of host processor implemented on the stream controller. Each instruction vector contains micro 
codes to enable the arithmetic and memory units and to control the streaming computation flows. The 
controller has three phases of operation: fetch, decode, and execute. Fetching retrieves an instruction from 
memory, decoding decodes the instruction, manipulates data paths, and loads registers; execution generates 
the results of the instruction. The fetch phase will require two clock cycles – one to load the address register 
and one to retrieve the addressed word from memory. The decode phase is accomplished in one cycle. The 
execution phase may require zero, one, or two more cycles, depending on the instruction.  

First, the functional units are declared according to the partition of the controller as shown in Figure 
2. Then their ports and variables are declared and checked for syntax. Then the individual units are described, 
debugged, and verified. The last step is to integrate the design and verify that it has correct functionality. 
The instruction mnemonics and their actions mentioned in the Figure 2, 3, 4, and 5 are listed below: 
 
 
NOP   No operation is performed; 

ADD Adds the contents of the source and destination registers parallel and stores the 
result into the destination register 

MUL Multiplies the contents of the source and destination registers parallel and stores 
the result into the destination register 

RD Fetches a memory word from the location specified by the second byte and loads 
the result into the destination register. The source register bits are don't cares 
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WR Writes the contents of the source register to the word in memory specified by the 
address held in the second byte. The destination register bits are don't-cares 

BR Branches the activity flow by loading the program counter with the word at the 
location (address) specified by the second byte of the instruction. The source and 
destination bits are don't-cares 

BRZ Branches the activity flow by loading the program counter with the word at the 
location (address) specified by the second byte of the instruction if the zero flag 
register is asserted. 

 

 
 

Figure 1. Flow Chart of the SRF 
 
 

 
Figure 2. Flow Chart for the Controller of a Processor that Implements the Instruction Set NOP, ADD, MUL, 

SQRT 
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Figure 3. Flow Chart for the Controller of a Processor that Implements the Instruction Set RD 
 

 
Figure 4. Flow Chart for the Controller of a Processor that Implements the Instruction Set WR 

 
 
3.4.   ARITHMETIC CLUSTER   

Two arithmetic clusters are controlled by the controller in a SIMD fashion. The arithmetic clusters 
operate simultaneously on interleaved data records transferred from the SRF, allowing eight data records to 
be processed in parallel. Each arithmetic cluster contains two adders, two multipliers, and one divide/square 
root unit. These units are controlled by statically scheduled VLIW instructions issued by the controller. All of 
the arithmetic units support both 16-bit single precision floating point and 16-bit integer operations. In 
addition, the adders and multipliers support 16-bit and 8-bit parallel-subword operations for a subset of the 
integer operations. The adders and multipliers are fully pipelined, allowing a new operation to issue every 
cycle. The divide/square root unit has two SRT cores, so no more than two divide or square root operations 
can be in flight at any given time. 

Figure 6 explains pipelined adder. At positive edge clock pulse if the select/reset signal is high the 
LSB’s registers will get cleared or else if any data is available then the LSB’s of the available two data’s will 
get added and the result is stored in LSB’s register. 
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Figure 5. Flow Chart of Pipelined Adder 

 
 
Similarly for MSB’s, first the MSB data will be stored in respective registers and the contents of the MSB 
registers will get added and stored in another register. Finally, the LSB and MSB get concatenate and result is 
sent to E (SRF). 
 
3.5. HOST PROCESSOR   

An external host processor executes all scalar code and transfers stream instructions to stream 
processor, which acts as a coprocessor. The host processor is able to execute small serial sections of code that 
exist in any real-world application. Stream processor is tailored to take advantage of the characteristics of 
media processing applications. Code that is not actually operating on media data, but is rather coordinating 
the control flow of the overall application, is much better suited to a conventional serial processor than a 
SIMD stream processor. Therefore, each processor is able to execute the code for which it was designed — 
the host processor executes small sections of control intensive serial code and stream processor executes 
large data parallel stream programs. 

 

4.  VERIFICATION, TESTING AND VALIDATION  
The developed test cases are validated for the basic functionalities. Testing involves operation of a 

system or application under controlled conditions and evaluating the results. Test cases have been performed 
on individual sections of the stream processor and texture filtering unit. 

 
4.1.  TEST VECTOR FOR STREAM CONTROLLER   

The main function of the stream controller is to issue control signals to the executable unit and to the 
stream register file. When an instruction of length 8-bit is issued as shown: 



                ISSN: 2089-4864 

IJRES  Vol. 2, No. 1,  March 2013 :  1 – 14 

8

 
 

Figure 6. Test Case Results of Stream Controller  
 
 

Figure 6, it is observed that the first two bits of the instruction are for destination address and third 
and fourth bits are for source address. The next four bits are opcode.The program counter holds the address 
of the next instruction to be executed. When the external reset is asserted, the program counter is loaded with 
0, indicating that the bottom of memory holds the next instruction that will be fetched. Under the action of 
the clock, for single cycle instructions, the instruction at the address in the program counter is loaded into the 
instruction register and the program counter is incremented. An instruction decoder determines the resulting 
action on the data paths and the ALU. 

 
4.2.  TEST VECTOR FOR PIPELINE ADDER   

WR The test case result of the pipelined adder is shown in Figure 7. The time taken to perform the 
compilation by using pipelined adder is 100 ns. In this model first the LSBs of the two numbers will be added 
and next the MSBs. The internal carry from the LSBs will be carried to the MSBs. 
 
 

 
 

Figure 7. Test Case Results for Pipelined Adder 
 
 



IJRES ISSN: 2089-4864  
 

Design and Development of Stream Processor Architecture for GPU Application Using… (Sanket Dessai) 

9

5.  RESULTS AND DISCUSSION    
Stream processor architecture IP is designed by using verilog programming language, Altera 

Quartus II, ModelSim, and Active HDL synthesis and simulation tools. The generated architecture of the 
stream processor is show in Figure 8. 

 

 
 

Figure 8. Generated Block Diagram of the Stream Processor 
 
 

Stream processor architecture IP is designed by using verilog programming language, Altera 
Quartus II, ModelSim, and Active HDL synthesis and simulation tools. The generated architecture of the 
stream processor is show in Figure 8. It has been observed from the Figure 8 that the generated stream 
processor architecture has three main sections, stream controller, stream register file, and executable unit. 
Each generated section’s internal data/instruction flow is explained as follows: 

 
5.1.  STREAM CONTROLLER UNIT    

The timing of all activity in the processor is determined by the controller. The controller must steer 
data to the proper destination, according to the instruction being executed. Thus, the design of the controller 
is strongly dependent on the specification of the machine's arithmetic cluster and data path resources and the 
clocking scheme available. In program-directed operation, instructions are fetched synchronously from 
memory, decoded, and executed to: 

a) operate on data within the arithmetic cluster unit 
b) change the contents of storage registers 
c) change the contents of the program counter (PC), instruction register (IR) and the address 

register (ADD_R) 
d) change the contents of memory 
e) retrieve data and instructions from memory 
f) control the movement of data on the system busses 

 
Figure 9. Generated State Machine Diagram of Controller 
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State machine diagram of the stream controller is shown in Figure 9, explains about how the 
instruction fetch, decode, and execute is done. In a serial processor three clock cycles are required to perform 
instruction fetch, decode, and execute, whereas in pipelined processor during first clock cycle instruction 
fetch of first instruction is done, during second clock cycle fist instructions decode and second instructions 
fetch is done and finally during third clock cycle first instructions execution, second instructions decode and 
third instructions fetch will done. 

The signals produced by the stream controller, shown in Figure 10, are identified as follows: 
 
 

Control Signal Action
Load_Add_Reg Loads the address register 

Load_PC Loads BUS_2 to the program counter 
Load_IR Loads BUS_2 to the instruction register 
Inc_PC Increments the program counter 

Sel_Bus_1_Mux Selects among the Program_Counter, R0, R1, R2, and R3 to drive Bus_1 
Sel_Bus_2_Mux Selects among Alu_out, Bus_1, and memory to drive Bus_2 

Load_R0 Loads general-purpose register R0 
Load_R1 Loads general-purpose register R1 
Load_R2 Loads general-purpose register R2 
Load_R3 Loads general-purpose register R3 

Load_Reg_Y Loads Bus_2 to the register Reg_Y 
Load_Reg_Z Stores output of ALU in register Reg_Z 

Write Loads Bus_1 into the SRAM memory at the location specified by the address 
 
 

 
Figure 10. Generated Block Diagram of the Stream Controller 

 
 

5.2.  EXECUTABLE UNIT 
The internal sections of the executable unit are shown in Figure 11. The executable unit consists of 

the two arithmetic cluster units, dedicated general purpose registers for arithmetic units, program counter, 
instruction register, address register, dedicated register for store output data.  

 
5.3.  ARITHMETIC CLUSTER UNIT 

Stream processor consists of two pipelined arithmetic cluster units. Each arithmetic cluster unit is a 
combination of three pipelined adder, two pipelined multiplier units. The generated pipelined adder is shown 
in Figure 12, the input to the clusters will be from the dedicated registers of the arithmetic clusters, to which 
data will be from stream memory unit. After processing within arithmetic clusters the output data will be fed 
back to the dedicated registers of arithmetic clusters and from there to other stream processor. 

The simulation result of the pipelined adder is shown in Figure 13. The simulation is of the model is 
done by using ModelSim simulation tool. The time taken to perform the compilation by using pipelined 
adder is 20 ns. The generated pipelined multiplier is shown in Figure 14. The input to the clusters will be 
from the dedicated registers of the arithmetic clusters, to which data will be from stream memory unit. 

The simulation result of the pipelined multiplier is shown in Figure 15. The simulation is of the 
model is done by using ModelSim simulation tool. The time taken to perform the compilation by using 
pipelined multiplier is 60ps. 
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Figure 11. Generated Internal Blocks of the Executable Unit 

 

 
 

Figure 12. Generated Pipelined Adder Unit 
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Figure 13. Simulation Results of Pipelined Adder 
 

 
 

Figure 14. Generated Pipelined Multiplier 
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Figure 15. Simulation Result of the Pipelined Multiplier 
 
 
6.  CONCLUSION 

Based on design specifications, stream processor unit has been developed.The design and 
development has been carried out using Verilog with the help of Altera Quartus II tool. A single controller 
has been used over traditional two controllers for controlling the data flow between host processor and stream 
processor and also between arithmetic clusters.Hence reducing area and power requirements. Writing the 
contents of the source register to the word in memory specified by the address held in the second byte. The 
destination register bits are don't-cares. The functionality of the modelled blocks is verified using test inputs 
in the simulator.The simulated execution time of 8-bit pipelined multiplier is 60ps and 100ns for 8-bit 
pipelined adder while operating at 90MHz. 
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