
International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol. 1, No. 3, November 2012, pp. 108~122
ISSN: 2089-4864 108

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

Design and Development of Texture Filtering Architecture for
GPU Application Using Reconfigurable Computing

Krishna Bhushan Vutukuru*, Sanket Dessai **
* Department of Computer Engineering, M. S. Ramaiah School of Advanced Studies, Bengaluru

** Department of Computer Engineering, M. S. Ramaiah School of Advanced Studies, Bengaluru

Article Info ABSTRACT

Article history:

Received Jun 17, 2012
Revised Oct 11, 2012
Accepted Oct 28, 2012

 Graphical Processing Units (GPUs) have become an integral part of today’s
mainstream computing systems. They are also being used as reprogrammable
General Purpose GPUs (GP-GPUs) to perform complex scientific
computations. Reconfigurability is an attractive approach to embedded
systems allowing hardware level modification. Hence, there is a high
demand for GPU designs based on reconfigurable hardware. The texture
filter unit is designed to process geometric data like vertices and convert
these into pixels on the screen. This process involves number of operations,
like circle and cube generation, rotator, and scaling. The texture filter unit is
designed with all necessary hardware to deal with all the different filtering
operations. The designed texture filtering units are modelled in Verilog on
Altera Quartus II and simulated using ModelSim tools. The functionality of
the modelled blocks is verified using test inputs in the simulator.Circle and
cube coordinates are generated for circle and cube generation. The work can
form the basis for designing a complete reconfigurable GPU.

Keyword:

Texture Filtering
Texel
GPU
Pixel
Reconfigurable

Copyright © 2012 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Sanket Dessai,
Department of Computer Engineering,
M.S.Ramaiah School of Advanced Studies,
#470-P,Peenya Industrial Area,Peenya 4th Phase,Bengaluru-560058
Karnataka, India.
Email: sanketdessai@gmail.com

1. INTRODUCTION

 Computer graphics has become an important technique in many applications such as CAD tools,
game, film, virtual reality and etc. Although many techniques are used in 3D Computer graphics, texture
mapping is one of the most successful and popular techniques in high-quality image synthesis [5]. Especially,
texture mapping creates the appearance of complexity without the tedium of modelling and rendering every
3D detail of a surface. Moreover, texture mapping is a basis of other mapping techniques such as shadow
mapping, environment mapping, bump mapping and etc. However, the greatest weakness of the texture
mapping is that it requires high memory bandwidth to fetch the texture image data. The use of a cache is
important in improving processing speed of a system. A well-tuned cache hierarchy and organization can
induce the increase of system performance and bandwidth saving in a system bus.During the texture mapping
process, a 'texture lookup' takes place to find out where on the texture each pixel centre falls. Since the
textured surface may be at an arbitrary distance and orientation relative to the viewer, one pixel does not
usually correspond directly to one texel [25]. Some form of filtering has to be applied to determine the best
color for the pixel. Insufficient or incorrect filtering will show up in the image as artefacts (errors in the
image), such as 'blockings', jaggies, or shimmering.

 Texture unit is one of the major components in GPU, and consists of three main parts-address
generator(s), texture cache(s), and texture filter(s). A reconfigurable architecture is chosen due to the

IJRES ISSN: 2089-4864

Texture Filtering Architecture for GPU Application Using Reconfigurable Computing (Krishna Bhushan)

109

following two reasons: (1) Area reduction is better achieved using all-purpose texture filters because they are
not idle as the required filter type varies during run-time; (2) the reconfiguration overhead is low because the
configuration does not switch very often.

2. TEXTURE FILTERING CONCEPTS

 In 3D computer graphics, surfaces of a 3D object are represented into sum of triangles. Drawing of a
2D image onto the surface is texture mapping. The image drawn onto the surface is called a texture map and
its individual element, texture pixel, is called a texel. The texture mapping consists of two steps: the first is a
transform from the 2D texture space to the 3D object space and the second is a transform from the 3D object
space to the 2D screen space [17]. The composition of two transforms is denoted as a rational linear
projective transform as shown in Equation (1). The xs, ys and u, v are coordinate values of a pixel in the
screen space and a corresponding texel in the texture space. And, a and i are constants.

 (1)

All the triangles creating a 3D object are decomposed into spans in a span rasterizer for displaying.
Span means a set of successive horizontal pixels in a triangle. By mapping, a span is mapped into a random-
directed straight line on a texture image as shown in Figure 1. This line conservation property is well
explained in the following. When an arbitrary line in the screen space, = A + B, is mapped into texture
image space, a corresponding line, v = A`u + B`, is obtained by substituting and in Equation (1) and
rearrangement [17].

Figure 1. Mapping of Triangle Spans

2.1 Texture Cache And Triangle Span

 The efficiency of cache memory depends on region of location in data accesses. Both spatial and
temporal regions are present in texture mapping [13]. Mipmap filtering increases spatial locality in texture
access since the level of the map is selected to closely match the level-of-detail that is being drawn on the
screen. That is, due to the mipmap filtering, one pixel movement in screen space is nearly mapped to one
texel movement in texture space. One texture image can be mapped to several polygons of single frame or
consecutive frames. Therefore, temporal locality in texel access is also present. In the cases of bilinear or
trilinear filtering, multiple texels are needed for single pixel. It also contributes to temporal locality because
some of the multiple texels for a pixel are appropriate to overlap with some texels for neighbouring pixels.
Due to the locality of texture, texture cache can be used to improve system performance and to save the
required bandwidth in system bus.

 ISSN: 2089-4864

IJRES Vol. 1, No. 3, November 2012 : 108 – 122

110

 A rendered scene can be decomposed into a set of spans. Cache replacement can be divided based
on the triangle span. If cache replacement occurs between texels residing in the same span, then it is called as
intra-span replacement. If replacement occurs between texels of two different spans, we call it inter-span
replacement. In cache operation, there is one cache replacement when one cache miss occurs excluding cold
miss. So, cache miss can be calculated by counting cache replacement occurring in the cache.

2.2 Geomatrical Methods

 The differentiation of texture analysis techniques that falls under the title of geometrical processes is
distinguished by their definition of texture as being composed of “texture elements” or primitives. The
process of analysis generally depends upon the geometric properties of these texture elements. Once the
texture elements are identified in the image, there are two major approaches to analyzing the texture. One
computes statistical properties from the extracted texture elements and utilizes these as texture features. The
other tries to extract the placement rule that describes the texture. The latter approach may involve geometric
or syntactic methods of analyzing texture.

 Each stream client may access its dedicated stream buffer every cycle if there is data available to be
read or space available to be written. The eight stream buffers serving the clusters are accessed eight words at
a time, one word per cluster. The eight stream buffers serving the network interface are accessed two words
at a time [20]. The other six stream buffers are accessed a single word at a time. The peak bandwidth of the
stream buffers is therefore 86 words per cycle, allowing peak stream demand to exceed the SRF bandwidth
during short transients. Stream buffers are bidirectional, but may only be used in a single direction for the
duration of each logical stream transfer.

2.3 VORONOI TESSELLATION FEATURES
Voronoi tessellation has been proposed because of its desirable properties in defining local spatial

neighborhoods and because the local spatial distributions of tokens are reflected in the shapes of the Voronoi
polygons. First, texture tokens are extracted and then the tessellation is constructed. Tokens can be as simple
as points of high gradient in the image or complex structures such as line segments or closed boundaries.

In order to apply geometrical methods to gray level images, first extraction of tokens from images
has to be performed. Following simple algorithms are used to extract tokens from input gray level textural
images.

1. Apply a Laplacian-of-Gaussian (LoG or 2G) filter to the image. For computational efficiency, the
2G filter can be approximated with a difference of Gaussians (DoG) filter. The size of the DoG
filter is determined by the sizes of the two Gaussian filters.

2. Select those pixels that lie on a local intensity maximum in the filtered image. A pixel in the filtered
image is said to be on a local maximum if its magnitude is larger than six or more of its eight nearest
neighbors. This results in a binary image.

3. Perform a connected component analysis on the binary image using eight nearest neighbors. Each
connected component defines a texture primitive (token).
The texture features based on Voronoi polygons have been used for segmentation of textured

images. The segmentation algorithm is edge based, using a statistical comparison of the neighboring
collections of tokens. A large dissimilarity among the texture features is evidence for a texture edge.

3. REQUIREMENT ANALYSIS
 The requirement analysis for the texture filtering architecture modelling includes on FPGA devices
and its components. A texture filtering unit needs to be verified, the output can be monitored on a terminal
for the multiprocessing tasks. In order to debug the processor and monitor the processor state a ‘JTAG
Debugger’ must be present in the system. Since the texture filtering unit model consumes huge number of
slices, the FPGA device of advanced version is required. Hence to bring about the mentioned requirements
for professional model of texture filtering unit architecture the available FPGA Altera Cyclone II has been
decided upon.

3.1 Voronoi Tessellation Features

 The design consists of developing a programmable graphics processing unit with as many aspects as
possible to be coded in hardware, even with object and edge generation. Texture mapping is a shading
technique for image synthesis in which a texture image is mapped onto a surface in a three dimensional
scene, much as wallpaper is applied to a wall. If a table is need to be modelled, a rectangular box for the table

IJRES ISSN: 2089-4864

Texture Filtering Architecture for GPU Application Using Reconfigurable Computing (Krishna Bhushan)

111

top, and four cylinders for the legs is used. Unadorned, this table model would look quite dull when rendered.
The realism of the rendered image can be enhanced immensely by mapping a wood grain pattern onto the
table top, using the values in the texture to define the colour at each point of the surface. The advantage of
texture mapping is that it adds much detail to a scene while requiring only a modest increase in rendering
time. Texture mapping does not affect hidden surface elimination, but merely adds a small incremental cost
to the shading process. The technique generalizes easily to curved surfaces.

 Texture mapping can be used to define many surface parameters besides color. These includes the
perturbation of surface normal vectors to simulate bumpy surfaces, transparency mapping to modulate the
opacity of a translucent surface, specularity mapping to vary the glossiness of a surface, and illumination
mapping to model the distribution of incoming light in all directions.

 In all of the varieties of texture mapping mentioned above, geometric mappings are fundamental.
Two-dimensional mappings are used to define the parameterization of a surface and to describe the
transformation between the texture coordinates system and the screen coordinates system.

 The graphics unit takes operations in a very-long instruction word format that has a one-to-one
representation to a high-level scripting language, which provides a mean to moving objects and features in a
scene to dynamically during run-time. The high-level design shares many similarities multi-cycle pipelines,
such as intermediate memories and registers. However, unlike a regular processor, the co-processor has one
pipeline that operates on multiple pieces of data in parallel; much like a vector processor does in a single-
instruction multiple-data fashion.

 There are three components of the circuit: an object generation pipeline to generate edges of the
target shape; a transformation pipeline that performed transformations on the unit objects1; and a rasterizing
pipeline that generates the points for the VGA controller to display. The design has made certain tradeoffs
due to the constraints imposed by the FPGA to synthesize the circuit.

First, the transformation pipeline does not employ a generalized 4x4 matrix multiply because the
limited number of multipliers on the FPGA. Instead, the transformation pipeline is currently designed as an
operate-and-accumulate module, with intermediate data values stored in registers. Alternatively with more
available multipliers, by first generating a reduced matrix transformation, one data set can be transformed in
one cycle. Second, the available memory on the FPGA is limited to 8.5 megabytes at most, of which about
512 kilobytes are available memory that are designed to be read from within a single cycle of exerting the
desired address.

 The graphics platform was designed to be able to generate shapes and objects by computing the
edges for the object, perform a number of transformations, and to rasterize the scene into a VGA buffer. The
module houses three concurrent pipelines: one to generate an edge list, one to compute the transformations,
and one to rasterize the transformed points. These three pipelines are implicit consumer-producer constructs,
with one waiting for the completion of the previous before continuing.

3.2 High Level Design

The graphics platform was designed to be able to generate shapes and objects by computing the
edges for the object, perform a number of transformations, and to rasterize the scene into a VGA buffer. The
module houses three concurrent pipelines: one to generate an edge list, one to compute the transformations,
and one to rasterize the transformed points. These three pipelines are implicit consumer-producer constructs,
with one waiting for the completion of the previous before continuing.

4 HARDWARE DESIGN

As described in the high level design, there are three pipelines to generate the edges to objects, to
compute transformations on the points, and to rasterize the computed elements, the first two pipelines need to
store all its data in M4K blocks in order to make them to the pipeline downstream. Since the last pipeline also
serves the VGA controller, the third pipeline stores its data in SRAM.

Due to the time constraint, circle, and cube generator have been implemented as part of the project.
The other sections which play an important role in texture filtering unit are scaling and rotator units. The
pipeline selects only one generator; the positive clock edge initializes the values to the generator, and raises
the initialize line for that generator. The generator will raise its ‘busy line’ when there is a valid edge existing
through its output lines [(Ax, Ay, Az), (Bx, By, Bz)], and raise ‘done’ when it is done.

4.1 Circle Generator Unit

The circle generator unit draws the two-dimensional circles at the specified origin and scale. The
flow chart of this unit is shown in Figure 2. This unit will be active when respective arguments are available
at positive edge clock cycle. If the reset signal is high then all registers available in the circle generator unit

 ISSN: 2089-4864

IJRES Vol. 1, No. 3, November 2012 : 108 – 122

112

will get cleared. During done_looping case, querying for sine and cosine table will be done, when init signal
is high or low. During looping case, the circle will be drawn depending on the sine and cosine values.

Figure 2. Flow Chart for Circle Generator Unit

4.2 Cube Generator Unit

The cube generator unit draws the cubes at the specified origin and scale. The flow chart of this unit
is shown in Figure 4. This unit will be active when respective arguments are available at positive edge clock
cycle. If the reset signal is high then all registers available in the cube generator unit will get cleared. For
these model eleven possible combinational cases has been written. A basic model of the cube with has been
considered initially as shown in Figure 3 (a). The dimensions of the cube depend on three main axis [(Ax,
Ay, Az)] and three imaginary axis [(Bx, By, Bz)]. Whenever, Ay axis is high the cube will change
accordingly in y-axis direction as shown in Figure 3 (b), Ax axis is high the cube will change its shape
accordingly in x-axis direction as shown in Figure 3 (c), and if Az axis is high the cube will change its shape
accordingly in z-axis direction as shown in Figure 3 (d) respectively. Similarly, for other combinations the
cube shape will be changed accordingly. The loop will run till all possible cases are checked.

IJRES ISSN: 2089-4864

Texture Filtering Architecture for GPU Application Using Reconfigurable Computing (Krishna Bhushan)

113

(a) (b)

(c) (d)

Figure 3. Stages of Cube Generation

4.3 Scaling Unit

Scaling is the process of resizing a digital image. Scaling is a non-trivial process that involves a
trade-off between efficiency, smoothness and sharpness. As the size of an image is increased, so the pixels
which comprise the image become increasingly visible, making the image appears "soft". The flow chart of
scaling unit shown in Figure 5 is explains: reducing an image will tend to enhance its smoothness and
apparent sharpness. Apart from fitting a smaller display area, image size is most commonly decreased in
order to produce thumbnails. Enlarging an image is generally common for making smaller imagery fit a
bigger screen in full screen mode, for example. In “zooming” an image, it is not possible to discover any
more information in the image than already exists, and image quality certainly suffers. However, there are
several methods of increasing the number of pixels that an image contains, which evens out the appearance of
the original pixels.

4.4 Rotator Unit

The rotation process is used to rotate or turn an object based on the angle of rotation required by the
user. A rotation transformation is generated by specifying a rotation axis and rotation angle. Parameters are
the rotation angle and a position () called the rotation point about which the object is to be rotated as
shown in Figure 6. And the flow chat is represented in Figure 7.

5. VERIFICATION, TESTING AND VALIDATION

 Testing of software or hardware is conducted on a complete system to evaluate the system's
agreement with its specified requirements.Testing involves operation of a system or application under
controlled conditions and evaluating the results.

5.1 TEST VECTOR FOR PIPELINE MULTIPLIER

The test case result of the pipelined multiplier is shown in Figure 8. The time taken to perform the
compilation by using pipelined adder is 60 ps. In this model each bit of the two numbers are multiplied
parallely.

 ISSN: 2089-4864

IJRES Vol. 1, No. 3, November 2012 : 108 – 122

114

Figure 4. Flow Chart for Cube Generator Unit

Figure 5. Flow Chart for Scaling Unit

IJRES ISSN: 2089-4864

Texture Filtering Architecture for GPU Application Using Reconfigurable Computing (Krishna Bhushan)

115

Figure 6. Rotation of an Object through Angle about the Position

Figure 7. Flow Chart for Rotator Unit

Figure 8. Test Case Result of Pipelined Multiplier

 ISSN: 2089-4864

IJRES Vol. 1, No. 3, November 2012 : 108 – 122

116

Figure 9. Test Case Result of Circle Generator when Reset Signal is High

Figure 10. Test Case Result of Circle Generator When Init Signal is High

IJRES ISSN: 2089-4864

Texture Filtering Architecture for GPU Application Using Reconfigurable Computing (Krishna Bhushan)

117

5.2 Test Vector for Circle Generator

This unit is used to draw the circular objects in an image. Initially, when the reset signal is high, and
all other signals are low, registers in the unit will get cleared as shown in Figure 9. When reset signal is low
and lock, init signals are high, at this time step size should be mentioned to draw a circle. It has been
observed in the Figure 10 that the outputs [(Ax, Ay, Az), (Bx, By, Bz)] of the block carry the coordinates of
the circle. Is has also been observed that for the given step size 0000000000000011, the shape of the circle is
changed along Ax, Ay, Bx, and By axis.

5.3 Test Vector for Cube Generator

This unit is used to draw the cubical objects in an image. Initially, when the reset signal is high and
all other signals are low, registers in the unit will get cleared as shown in Figure 11. When reset signal is low
and lock, init signals are high, at this time step size should be mentioned to draw a cube shape objects. It can
be observed in the Figure 12 that the coordinates of the cube changes according to the counter.

5.4 Test Vector for Rotator

This unit is used to rotate the objects in an image. When reset signal is low and lock, init signals are
high, at this time the coordinates of the objects in an image which are needed to be rotated are received from
the respective functions as shown in Figure 13. The coordinates of the objects in images changes according to
the axis.

Figure 11. Test Case Result When Reset Signal is High For Cube

Figure 12. Test Case Result When Init Signal is High For Cube

 ISSN: 2089-4864

IJRES Vol. 1, No. 3, November 2012 : 108 – 122

118

6. RESULTS AND DISCUSSION

Texture filtering unit architecture IP is designed by using verilog programming language, Altera
Quartus II, ModelSim, and Active HDL synthesis and simulation tools. In the generated architecture of the
texture filtering unit important sections are shown partially in Figure 14. The texture filtering unit is designed
using geometrical modelling. The functions of each block of the texture filtering unit are explained below.

6.1 Circle Generator Unit
The circle generator unit draws circles shapes available in an image. This unit has been designed

using Bresenham Line Algorithm. This block would generate a two-dimensional circle at the specified origin
and scale, so ellipse can be realized.

6.2 Cube Generator Unit
The cube generator unit shown in Figure 15 draws cube shapes available in an image. This unit has

also been modelled using Bresenham Line Algorithm. This block would generate a cube at the specified
origin and scale. Whenever, there is a change in the output of the respective axis [(Ax, Ay, Az), (Bx, By,
Bz)] the shape of the cube will be changed accordingly. The three transformations currently supported in this
model are scaling, translation, and rotation on x, y, z axis.

Figure 13. Test Case Result For Rotator

6.3 Rotate Unit
The rotation process is used to rotate or turn an object based on the angle of rotation required by the

user. A rotation transformation is generated by specifying a rotation axis and rotation angle. Parameters are
the rotation angle and a position () called the rotation point about which the object is to be rotated.
The generated block of the rotate unit is shown in Figure 16. It has inputs of 16-bit [(Ax, Ay, Az)] and theta.
The changed coordinates of the object are sent through the imaginary points [(Bx, By, Bz)] respectively.

IJRES ISSN: 2089-4864

Texture Filtering Architecture for GPU Application Using Reconfigurable Computing (Krishna Bhushan)

119

6.4 Scale Unit
The unit shown in Figure 17 helps to scale the edges of the objects to the specified origin and scale.

This helps in adding effects to the overall object being rendered by the GPU and more specifically by the
texture filter. The object rendering is carried out by the GPU and enhancement of effects is done by other
units. Texture scaling is used to enhance effects on the object for example shadows, edges, brightness etc.
This adds to the overall look and feel.

Figure 14. Partial Generated Circuit of the Texture Filtering Unit

 ISSN: 2089-4864

IJRES Vol. 1, No. 3, November 2012 : 108 – 122

120

Figure 15. Generated Block Diagram of the Cube Unit

Figure 16. Generated Block Diagram of the Rotate Unit

Figure 17. Generated Block for Scaling Unit

7. CONCLUSIONS

 Based on design specifications, texture filtering architecture had been designed and verified.but due
to certain resources constraints mapping to FPGA had not been achived. The available memory on the FPGA
is limited to 8.5 megabytes at most, of which about 512 kilobytes are available memory that are designed to
be read from within a single cycle of exerting the desired address. A reconfigurable architecture is chosen

IJRES ISSN: 2089-4864

Texture Filtering Architecture for GPU Application Using Reconfigurable Computing (Krishna Bhushan)

121

due to the following two reasons (1) Area reduction is better achieved using all-purpose texture filters
because they are not idle as the required filter type varies during run-time; (2) the reconfiguration overhead is
low because the configuration does not switch very often.

REFERENCES
[1] Altera Corporation, "Introduction to Simulation of Verilog Design Using ModelSim Graphical Waveform”,

February 2012.ftp://ftp.altera.com/up/pub/Altera_Material/9.1/Tutorials/Verilog/ModelSim_GUI_Introduction.pdf
[13 February 2012]

[2] Arvo J., “Graphics Gems II” USA:Academic Press Inc.
[3] S.Banerjia,E.Ozer,and T.M.Conte, “Unified Assign and Schedule:A New Approach to Scheduling for Clustered

Registered File Microarchitectures, Proceeding of IEEE International Symposium on Microarchitecture, pp308-
315,2009

[4] Q.K.Chen and J.K Zhang, “A Stream Processor Cluster Architecture Model with the Hybrid Technology of MPI
and CUDA”, Proceedings of IEEE International Conference on Information Science and Engineering,page nos 86-
89,2009

[5] J.Chittarmuru, J.Euh and W.Burleson, “A Low-Power Content-Adaptive Texture Mapping Architecture for Real-
Time 3D Graphics”,University of Massachusetts Amherst,http://www.citeseerx.ist.psu.edu[December 2012]

[6] Doulos Inc., “OVM Golden Reference Guide,Version 2.0”, Hamspire:Doulos,2008
[7] Doulos Inc., “The Verilog Golden Reference Guide, Version 1.0”,Hamspire:Doulos,1996
[8] J.D.Foley,A.V.Dam,S.K Feiner, and J.K.Hughes, “Computer Graphics:Principles and Practice in C, 2nd

edition.”,USA:Addison-Wesley.,1990
[9] K.S. Fu, “Syntactic Pattern Recognition and Application”, New Jersey:Prentice-Hall.,1982
[10] P.N.Glaskowsky, “NVIDIA’s Fermi: The First Complete GPU Comuting Architecture, <http://www.nvidia.com/

content/pdf/fermi_white_papers/P.Glaskowsky_Nvidia’s_fermi_the_first_complete_GPU_architecture.
pdf>[8 December 2011]

[11] A.Greß and G. Zachmann, “GPU-ABiSort: Optimal Parallel Sorting on Stream Architectures”
Proceeding of IEEE Conference on Graphics Hardware,2006

[12] M.Gschwind,V.Salapura., “A VHDL Design Methodology for FPGA”,Proceeding of FPL`95 of the 5th
International Workshop on Field-Programmable Logic and Application,pp 208-217,1995

[13] A.Gupta and Z.S Hakura, “The Design and Analysis of a Cache Architecture for Texture Mapping”
<http://www.cs.cmu.edu/afs/ cs/academics/class/15869-f11/www/readings/hakura97_texcaching.pdf> [8 December
2011].

[14] P.S.Heckbert, “Survey of Texture Mapping” IEEE Transcation of Computer Graphics and Applications,6,pages
nos.56-67,1986

[15] Intel’s Next Generation Integrated Graphics Architecture – Intel Graphics Media Accelerator X3000
and 3000,2006 http://www.intel.com/products/chipsets/gma3000/gma3000.pdf [16 November 2011]

[16] E.Kilgariff, R.Fernando, “The GeForce 6 Series GPU Architecture”,
http://www.nvidia.com/page/geforce6.html> [8 December 2011]

[17] C.H.Kim and L.S.Kim, “Adaptive Selection of an Index in a Texture Cache”, In Proceedings of IEEE International
Conference on Computer Design:VLSI in Computers and Processors,pp 295-300,2004

[18] Lattice Semiconductor Corporation, “ FPGA Design Guide”
http://www.lattticesemi.com/lit/docs/manuals/fpga_design_guide.pdf, [5 January 2012]

[19] J.McDonald, “Insider Guide:FPGAs,Tools and Boards,” 2008,
http://www.eg3.com/report-fpga[30 September 2011]

[20] NVIDIA, “GeForce 8800 GPU Architecture Overview”,White paper TB-02787-001_v0.9,
http://www.nvidia.com/object/IO_37_100.html, [16 November 2011]

[21] NVIDIA, “GeForce GTX 200 GPU Architecture Overview ”,White paper TB-04044-001_v01,
http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf [16 November 2011]
object/IO_37_100.html, [16 November 2011]

[22] S.Rajagopal, J.R.Cavallaro and S.Rixner, “Design Space Exploration for Real-Time Embedded Stream Processors”
Proceedings of IEEE Computer Society,2004

[23] F.Remond, “The Work Flow of a Block-Based Design Team,Integrated System Design ”,2004,
http://www.eedesign.com/editorial/2000/designtools0012.html, [16 November 2011]

[24] J.Sanders, E.Kandrot and J.Dongarra, “CUDA by Example an Introduction to General-Purpose GPU
Programming”, Boston:Addison-Wesley,2011

[25] H.C.Shin,J.A,Lee and L.S.Kim, “A Cost-Effective VLSI Architecture for Anisotropic Texture Filtering in Limited
Memory Bandwidth”,IEEE Transactions on VLSI Systems,14,pp 254-257,2006

[26] Stream Processors Inc., “Stream Processing :Enabling the New Generation of Easy to Use,High-performance
DSPs” ,White Paper,USA,2008

[27] F.Tomita,S.Tsuji, “Computer Analysis of Visual Textures”,Boston:Kluwer Academic Publishers,1990
[28] H.Voorhees and T.Poggio, “Detecting Textons and texture Boundaries in natural Images”,Proceedings of the First

International Conference on Computer Vision,London, pp250-258,1987

 ISSN: 2089-4864

IJRES Vol. 1, No. 3, November 2012 : 108 – 122

122

[29] W.T.Wang, Y.C.Chen,C.P.Chung, “A Run-Time Reconfigurable Fabric for 3D texture Filtering”, Proceedings of
IEEE International Conference on Application Specific Systems,Architectures and Processors,pp 180-185, 2007

[30] C.M.Witternbrink,E.Kilgariff and A.Prabhu, “FERMI GF100 GPU Architecture”,IEEE MICRO,31,pp 50-59,2011
[31] Xilinx, “System Generator for DSP User Guide Release 10.1”,

http://www.xilinx.com/support/sw_manuals/sysgen_user.pdf, [20 December 2011]
[32] S.W.Zucker, “Toward a model of Texture”,Computer Graphics and Image Processing,5,pp 190-202, 1976

BIOGRAPHIES OF AUTHORS

Krishna Bhushan Vutukuru received his BSc, MSc degree in Electronics and MSc[Engg] in
Real-Time Embedded Systems from Osmania University, Acharya Nagarjuna University, India
in 2005 ,2007 and Coventry University,UK in 2012.His research interests include the field of
System on Chip Design, Digital Design and FPGA and Embedded Systems.

Sanket Dessai received his BSc, MSc degree in Physics and MSc[Engg] in Real-Time
Embedded Systems from Goa University,India in 2001 ,2004 and Coventry University,UK in
2007.Since 2007 he has been a Assistant Professor at M .S.Ramaiah School of Advanced
Studies(MSRSAS),Bengaluru in collaboration with Coventry University.His research interests
include the field of System on Chip Design,Embedded Systems, MEMS/NEMS
Engineering,Nanophysics and Nanotechnology,Solid State Physics and Engineering and
Photonics

