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 This paper describes a Queued-Stack (QS) Dataflow Processing Element 
(DPE) that is used in a cognitive sensor platform. The queued-stack is used 
for buffering input data to the DPE and for storage of variables and results. 
The queuing mechanism and dataflow protocol provides the capability to 
compose multi-node computational systems where communication between 
elements is via non-blocking FIFO channels. System composition is achieved 
using synchronous dataflow tools such as SDF3 or Ptolemy. The dataflow-
processing element is implemented using single cycle micro-coded engine 
where the ratio of datapath transistors to control logic is optimized for 
programmable energy-performance sensitive applications. 
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1. INTRODUCTION 

The next step in the evolution of intelligent sensors is towards cognitive sensors. Cognitive sensor 
platforms have the capability to reason about both their external environment and internal conditions and to 
modify their processing behavior and configuration in an ongoing effort to optimize their operation relative 
to the device’s relevant optimization criteria [1]. This requires improved computational capability to perform 
the additional tasks, within the same energy budget as an intelligent sensor system. General-purpose 
computing platforms do not have the energy-performance characteristics needed for low energy sensor 
systems. Hard-coded logic would provide the most optimal energy-performance but at the expense of re-
programmability. The basic architecture of the sensor platform is shown below in Figure 1. The processing 
element used in this platform is implemented using an energy efficient stack-based microcoded engine. 

 
 

Figure 1. Sensor Platform Architecture 
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A key charac teristic of a sensor system is that it is primarily a reactive system where a change in the 
value of a sensor input will automatically force recalculation of the values of other variables in the system. 
The processing of sensor data in a reactive system is optimally done using a dataflow-processing element 
(DPE) [2]. The DPE is “fired” once all the data tokens have been received. Upon completion of the 
computation the dataflow-processing element is idled, waiting for the next tranche of tokens from the channel 
node. 

The passing of tokens is best accomplished using a queuing (FIFO) mechanism, which is insensitive 
to the variable latency of the input sensor data; thus eliminating the need for the DPE to fetch and store the 
sensor data on the stack (LIFO). This architecture merges a queuing mechanism into a stack-based processing 
element. The result is queued-stack that is used to store input data from a sensor channel as well as results 
from the computation operations in the datapath.  

The merged queued-stack element provides an ideal mechanism for building a synchronous 
dataflow system. Processing of data is triggered when the correct numbers of tokens are inserted into the 
queue. The ability to simultaneously read or write to the queued-stack prevents unnecessary stalling of the 
dataflow-processing element. The zero-overhead nested-looping, repeat function and the conditional 
execution micro-operations result in excellent energy-performance efficiency. 

This paper presents a unique implementation of a synchronous dataflow-processing element for use 
in reactive systems. The queued-stack architecture and microcoded control provide optimal energy-
performance for energy limited intelligent/cognitive sensor platforms. The token-based channel 
communication protocol provides the capability to compose complex systems of heterogeneous data-flow 
processing elements. 

 
 

2. SYSTEM COMPOSABILITY 
As mentioned above the queued-stack architecture provides a mechanism to easily compose systems 

by connecting processing nodes via channel nodes. The channel nodes implement a synchronous dataflow 
protocol where data tokens are transferred from one node and consumed by another node using a non-
blocking FIFO [9]. Synchronous dataflow tools such as SDF3 [10] and Ptolemy [11] can be used to compose 
and simulate the sensor system. 

Figure 2 below shows a “composed system” consisting of a cluster of DPEs, sensor elements and 
associated channel nodes, an output communications element and a debug element. This configuration is 
used for basic dataflow processing of data from multiple sensors. The DPEs can be synthesized to have 
heterogeneous computational capabilities based on the algorithmic requirements of the system. Each DPE 
can be configured to have one or two input-QS elements depending on how many channels need to be 
processed and what the storage requirements are for the algorithms being executed by the DPE.  

 

 

 
Figure 2. Example of a “Composed System” 

 
The channel nodes are used to connect a DPE (or clusters of DPEs) to the sensor element(s). The 

channel nodes buffer the transactions from the sensors and forward the data tokens to the DPE. Each DPE 
has an integrated output channel node that is used to connect the output of a DPE to the input of another 
DPE. 
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3. DATAFLOW PROCESSING ELEMENT 
The processing element used for this platform is implemented as a stack-based microcoded engine 

with advance features such as nested looping, conditional execution, repeat execution and a programmable 
lookup table for reconfigurable functional operations. Figure 3 below shows a block diagram of the DPE 
implemented using three QS elements and one output FIFO channel node. The input QS elements are used to 
receive channel data from two sources or they can be configured such that one QS element is receiving data 
while the other is processing data from a previous transaction. The Result-QS is used to store the higher 
precision results of the datapath operations.  

 

 
 

Figure 3. Dataflow Processing Element 
 
 

The DPE is implemented using a parameterized synthesized model where the width and depth of the 
stacks, functional units, and data-paths are determined during algorithmic development time. For systems that 
are composed of multiple DPEs, it is feasible for each DPE to be configured for a task or group of tasks 
during the synthesis process by selecting the optimal parameters. 

The microcode storage is implemented using a standard single port ROM or WCS (writeable control 
store) memory compiler. The WCS configuration is useful for systems where the microcode needs to be 
updated from an external source such as flash memory [3]. 

 
 
4. QUEUED-STACK ARCHITECTURE 

The Queued-Stack (QS) is implemented as a circular buffer that has two circular pointers, one to 
track the LIFO (stack) data and the other one to track the FIFO (queue) data. A three-deep QS is shown 
below in Figure 4. The FIFO pointer tracks data “inserted” into the queue from either the channel data or the 
result data from the datapath operations. The LIFO pointer is used to track pushes and pops from the stack. 
The QS can insert data into the queue while simultaneously pushing or popping data on/off the stack. This 
allows channel data to be asynchronously inserted into the queue element while the computational engine is 
processing data from a previous transaction.  
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The microcode engine handles the QS data management. The engine can select if the QS is available 
to receive inserted data while the computational engine is active (“push mode”) or if the QS will fetch the 
data from the channel once the computation task is completed (“pull mode”). Pull-mode allows the QS to be 
used as a circular buffer to store intermediate data used in many filtering algorithms. Note: in pull-mode, the 
output data must be stored in an output FIFO channel node to prevent stalling the processing element.  

 

 
Figure 4. Three-deep Input Queued-Stack 

 
 

As shown above in Figure 4, both the top-of-stack (TOS) data and the bottom-of-stack (BOS) data 
can be accessed simultaneously. In addition, the pointers can be manipulated by the microcode to select data 
anywhere in the circular buffer. For example, the LIFO pointer can be rotated five positions to the right and 
the FIFO pointer can be rotated 5 positions to the left in a single instruction by executing a non-write POP 
command, a non-write INSERT command with a REPEAT of 5 while executing a data path instruction and 
storing the result in the RESULT-QS, the Input-QS, and the Output-FIFO.  

Table 1 below shows the operations that the QS support. The basic operations include PUSH, 
POP/POP_WR and INSERT that write data to either the TOS or BOS and selectively rotate the appropriate 
pointers. The same operations can also be merged to provide the ability to store results to the TOS and BOS 
in a single write cycle. 

 

Table 1. Queued-Stack Operations 

Operation Description 

PUSH Rotate TOS pointer “right” and write result-bus value to new TOS 

POP Rotate TOS pointer “left” (no write) 

POP_WR Rotate TOS pointer “left” and write result-bus value to new TOS 

INS Rotate BOS pointer “left” and write result-bus value to BOS 

INS_NW Rotate BOS pointer “left” without writing 

PUSH_NW Rotate TOS pointer “right” (no write) 

TOP Write result bus value to TOS w/o rotating pointer 

BOT Write result bus value to BOS w/o rotating pointer 

TOP_BOT Write result bus value to TOS/BOS w/o rotating pointers 

PUSH_INS Rotate both pointers and write result-bus value to TOS/BOS  

POP_BOT Rotate TOS pointer “left” and write result-bus to BOS 

POP_INS Rotate TOS pointer “left”, rotate BOS “left” and write result-bus to new BOS 

POP_WR_BOT Rotate TOS pointer “left” and write result-bus to BOS and to new TOS 

PUSH_BOT Rotate TOS pointer “right” and write result-bus to BOS and to new TOS 

TOP_INS Rotate BOS pointer “left” and write result-bus to TOS and to new BOS 
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5. DPE DATAPATH 
The DPE datapath is composed of five major elements: shifter, multiplier, adder, logical unit (LU) 

and a special function unit (SFU). The latter two elements can be eliminated during system synthesis if they 
are not needed. Figure 5 below shows the datapath configuration including the multiplexing units that control 
the data flow through the datapath.  

 
 

Figure 5. DPE Datapath 
 
 

The datapath multiplexers have latched outputs, which can store intermediate data and are used to 
prevent spurious transactions propagating through the shifter-multiplier-adder paths thus reducing power. 
The Write-Back-MUX multiplexes data from the Adder, SFU, logical unit and the GPIOs to the result bus. 
The result bus is connected to the three QS elements and the output FIFO via the multiplexing scheme shown 
above in Figure 3. The Result-QS is used to store the results of the datapath transactions and is synthesized to 
be the width of the Adder. An Input-QS can also be used to store results, however it is limited to storing data 
that is the width of the incoming channel data. Table 2 below shows the operand sources for the 
computational instructions.  

 

Table 2. Datapath  Operand Sources 

Shifter Multiplier/LU/SFU Adder 

TOS/BOS IQS1 SHIFTER_A/SHIFTER_B SHIFTER_A/SHIFTER_B 

TOS/BOS IQS2 TOS/BOS IQS1 TOS/BOS IQS1 

TOS/BOS RQS TOS/BOS IQS2 TOS/BOS IQS2 

IMMEDIATE DATA TOS/BOS RQS TOS/BOS RQS 

 IMMEDIATE DATA IMMEDIATE DATA 

  MULTIPLIER 

 

 

The functions that the SFU performs are determined during the algorithmic design phase. Typical 
functions include: table-lookup for sensor recalibration, interpolation, linearization, averaging, fuzzy logic 
calculations, data compression, data fusion, time stamping, edge detection, threshold detection, period 
measurements, etc. 

The microcode engine individually controls each element in the datapath resulting in a large 
combination of parallel operations including: Shift-Multiply-Add, Shift-Multiply-Saturating Add, Multiply-
Add, Multiply-Saturating Add, Shift-Add, Shift-Saturating Add, Arithmetic & Logical Shift, Bit Clear, Bit 
Set, Boolean Logic functions, table lookup, interpolation, linearization, absolute value, etc. 
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6. MICROCODE ENGINE 
The decision to use a microcoded instruction format was primarily driven by the fact that the DPE is 

not pipelined and there are a number of parallel operations that must be performed in a single cycle. This 
eliminates the need for an instruction decoder and sequencer to control the various units in the DPE. This 
results in an optimal ratio of control logic to datapath logic. 

There are four control fields in the microcode word as shown below in Figure 6.  

 

 

Figure 6. Microcode Control Fields 

 
The first field defines specific micro-operations within the microcode engine. These include nested 

looping, repeat function, branching and conditional execution. Three levels of hardware nested looping [4] 
are supported. All nested loop offsets are backwards while branch offsets can be both forwards and 
backwards. The branch operation utilizes the offset field and the loop count fields, which extends the range. 
The repeat operation further modifies the program flow by providing the capability to execute multiple 
nested loops. This is useful for operating on multi-dimensional data arrays. There are three repeat counters, 
one for each level of nesting. A state machine tracks the nesting context of all active loops. Most microcode 
operations can be conditionally executed. The exceptions are loop returns and the halt instruction. 
Conditional execution uses condition codes derived from the arithmetic units in the datapath and the SFU. 

The second field is the queued-stack control. A typical operation is shown below in Figure 7. During 
the first half of the cycle the QS provides the operands to datapath and the second half of the cycle the 
address of the QS can be modified for the write operation. For example if a PUSH operation is performed the 
FIFO pointer is “shifted right” to point to next location on the stack. The result data can be written to this 
location at the end of the cycle. The pointers in the IQS units and the RQS unit always point to valid data and 
are only modified during a write cycle. 

 

 
 

Figure 7. Typical QS read-write Cycles 
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The third field controls the datapath using “one-hot” control bits. The bits control the multiplexers 
and the functional units. As can be seen from Figures 3, 4 and 5, there are 10 multiplexers that control the 
flow of data through the functional units, the write-back mux and the QS elements.  

The fourth field is used for immediate data and to address data in the lookup table. The width of this 
field is determined by the width of the microcode word. In some implementations of the DPE, sub-fields in 
the micro-engine control field can be used to extend the width of word.  

The block diagram of the micro-engine is shown below in Figure 8 and consists of four components: 
WCS, micro-address generation, operation queue and a finite state machine controller. 

 

 
 

Figure 8. Block Diagram of The Microcode Engine 
 

The micro-engine is controlled via a 4-bit micro-opcode field. The micro-engine opcodes supported 
are shown below in Table 3. There are two basic execution modes: normal and conditional. In normal mode 
all micro-operations execute independently of the value of the condition codes. In conditional execution the 
value of the condition codes from the previous cycle are compared with value in micro-code word. If the two 
codes are not identical the micro-operation is not executed. 

 

Table 3. Micro-Engine Opcodes 

OPCODE REPEAT OPERATION 
EXEC Y Normal Execution 

COND_EXEC N Conditional Execution 
WFE N Wait for Event 
JMP N Jump to address specified in IMMED_DATA field 

JUMP_HALT N Jump to address specified in IMMED_DATA field THEN Halt 
LOOP_BACK Y Loop back for Loop # {1,2,3} 

BRA N Branch Unconditionally 
BR_WB_GT N Branch Writeback GREATER THAN REFERENCE DATA 
BR_WB_LT N Branch Writeback LESS THAN REFERENCE DATA 
BR_WB_EQ N Branch Writebakc EQUAL toREFERENCE DATA 
BR_SFU_GT N Branch SFU result GREATER THAN REFERENCE DATA 
BR_SFU_LT N Branch SFU result LESS THAN REFERENCE DATA 
BR_SFU_EQ N Branch SFU result EQUAL to REFERENCE DATA 

TXFR N Transfer Output FIFO data to Channel 

 

The finite state machine (FSM) controls the nested looping and repeats functions. Three levels of 
nesting looping are supported in the base architecture. The repeat function is used to control the number of 
times a loop is repeated. There is a repeat counter for each nested loop that is loaded from the RPT_CNT 
field. The OFFSET field in the microcode is used to “loop backwards” in the loop when the LOOP_BACK 
opcode is executed. The RPT_CNT and OFFSET fields are used by the BRANCH opcode to increase the 
twos-complement offset range of the branch into the micro-ROM.  
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Figure 9 below shows a typical nested looping microcode sequence. In this sequence there are two 
nested loops and one conditionally executed branch loop. The nested loops execute 10 times before the 
branch instruction is executed. Note that the microinstructions are executed in parallel, resulting in zero-
overhead loop and branch instructions. Once the conditional branch is not taken the JUMP_HALT 
microinstruction is executed. 

 

 

Figure 9. Typical “Nested Looping” Microcode Sequence 
 

The JUMP_HALT is a merged microinstruction that jumps to address specified and halts the micro-
engine to wait for the next “fire” signal”. The microcode engine is “fired” when the new channel data is 
inserted into the queued-stack. Note: the micro-engine clocks are disabled during idle mode resulting in 
minimal power dissipation. 

The microcode engine contains an operation queue that is used to register events and trigger 
microcode operations in response to the events. The operation queue provides a mechanism to interrupt the 
normal flow of the microcode at specific entry points. The queue is circular and can also be used to store a 
sequence of macroinstructions for systems that use ROM storage for the microcode. The FSM controls the 
flow of events/macro-instructions to the micro-engine. 

As mentioned above, the microcode storage can be either read-only-memory (ROM) or writable-
control-store (WCS) based. In either case the clocks to the storage element are controlled by the FSM. For 
non-looping repeat functions, the latched microcode word is accessed instead of accessing the memory 
element. This provides additional energy savings as it eliminates pre-charge clocking energy. The WCS is 
loaded via the JTAG interface and is used in systems where overlaying of microcode is needed due to the 
size of the code or for debugging microcode before the microcode is committed to ROM. 

 
 

7. DPE OPERATION EXAMPLES 

The DPE micro-architecture is designed to primarily support sensor data conversion and 
conditioning. Typical operations include: digital filtering, decimation, linearization, averaging, data 
compression, feature extraction, data fusing, edge detection, threshold detection, etc. Figure 11 below shows 
an FIR filter configuration that can be implemented with five microinstructions and executes in ten clock 
cycles.  

IQS-1 is used to store the incoming data tokens from the channel node. The tokens are inserted at 
the bottom of the stack. The old tokens are over-written when the BOS pointer recirculates. IQS-2 is used to 
store the filter variables for each of the stage multipliers. The addition results are accumulated in the RQS 
element. The filter calculations proceed from oldest data token to the most recent. The TOS pointers for IQS-
1 and IQS-2 are “popped” to point at the next variable and token for each multiplication step.  
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Figure 11. FIR Filter Configuration 

 

The data storage for the FIR filter calculations is shown below in Figure 12. 

 

Figure 12. Data Storage For FIR Filtercalculations 

 

The microinstructions to execute one filter cycle are: 

 
1:   ADD, ZERO, ZERO,   ; ZERO -> ACC  
 POP_INS_RQS   ; INSERT AT BOS RQS and POP TOS 
 
2:   MULT, TOS_QS1, TOS_QS2,   ; A(3,2,1) * X(N-3,2,1) 
 ADD, BOS_RQS,   ; + ACC 
 WB[BOS_RQS],   ; WRITEBACK-> ACC 
 POP_QS1, POP_QS2,   ; POINT AT NEW VARIABLE 
 RPT=3    ; REPEAT 3 TIMES 
 
3: MULT, TOS_QS1, TOS_QS2  ; A(0) * X(N) 
 ADD, BOS_RQS,   ; + ACC 
 WB_FIFO,    ; WRITEBACK TO FIFO ELEMENT 
 POP_QS1    ; CONSUME X(N) 
 
4: PUSH_NW_QS1, PUSH_NW_QS2,  ; RESET VARIABLE POINTERS 
 RPT=4    ; REPEAT 4 TIMES 
 
5: JUMP_HALT 1;   ; JUMP and WAIT FOR TOKEN 
 

 

The first microinstruction inserts a ZERO into the BOS of the Result-QS, which is used as the 
accumulator for MULT-ADD instructions. The second microinstruction is repeated 3 times and executes a 
MULT-ADD of the last 3 stages of the filter, accumulating the result in the RQS. The third microinstruction 
does a MULT-ADD of the new data token and the A(0) filter variable and issues a POP command to 
consume the X(n) variable. The result is also sent to the output FIFO using WB_FIFO command in the same 
microinstruction. The fourth microinstruction resets the TOS pointers to point to the A(3) filter variable and 
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the new X(-3) data token. The JUMP_HALT microinstruction branches back to the first instruction that 
clears the accumulator and waits for the next data token. Once the X(n) variable is inserted into the BOS of 
IQS-1. The channel node issues a FIRE signal to the DPE and the sequence repeats itself. 

Figure 13 below shows a Bi-Quad IIR filter configuration that can be implemented in 9 
microinstructions and 13 clocks.  

 

 

Figure 13. IIR filter Configuration (Bi-Quad) 

 

There are two summing nodes. Each one is a separate entry in the RQS. The first sum is inserted 
into the bottom of the RQS. It will become the V(n-1) variable the next time the filter is evaluated. The 
second sum replaces the V(n-2) variable once it is used. The data storage for the IIR filter calculations is 
shown below in Figure 14.  

 

 

 

Figure 14. Data Storage For IIR Filter Calculations 
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 WB_BOS_RQS,   ; WRITEBACK -> ACC_1 
 POP_QS2,    ; POINT @ B(2) 
 PUSH_NW_RQS   ; POINT @ V(N-2) 
 
3: ADD, BOS_RQS, BOS_QS1,  ; X(N) + ACC 
 WB[BOS_RQS]   ; WRITEBACK -> ACC_1 
 
4: MULT, TOS_RQS, TOS_QS,  ; V(N-2) * B(2) 
 WB[TOS_RQS],   ; WRITEBACK -> ACC_2 (V(N-2)) 
 POP_QS2    ; TOS => @ B(1) 
 
5: POP_RQS    ; POINT AT V(N-1) 
  
6: MULT, TOS_RQS, TOS_QS2,  ; V(N-1) * B(1) 
 WB[TOS_RQS],   ; WRITEBACK -> ACC_2 
 POP_QS2    ; POINT @ B(0) 
 
7: MULT, BOS_RQS, TOS_QS2,  ; ACC_1 * B(0) 

 ADD, TOS_RQS   ; + ACC_2 
 WB[FIFO]    ; WRITEBACK TO FIFO ELEMENT 
 POP_RQS    ; POINT AT NEW V(N-1) 
  
8: PUSH_NW_QS2,    ; RESET VARIABLE POINTER 
 RPT=5    ; REPEAT 5 TIMES 
 
9: JMP_HALT 1;   ; JUMP and WAIT FOR TOKEN 
 

 

8. ENERGY-PERFORMANCE ANALYSIS AND RESULTS 

The energy-performance analysis of the DPE was done using an 180nm mixed-signal process. The 
DPE logic was synthesized and the layout generated using DCT/ICC from Synopsys using the typical process 
corner at 85°C. The layout parasitics were extracted using Calibre from Mentor Graphics. The timing and 
energy numbers were then derived using Prime Time and Prime Time-PX respectively. 

Tables 4 and 5 below show the energy-performance for the DPE, a reconfigurable DSP (Pleiades) 
developed at UC-Berkley [5] and the Cortex-M3 from ARM [6]. The Cortex-M3 is widely used in embedded 
designs as both a general-purpose processor and as a DSP. The reconfigurable DSP from UCB is an excellent 
example of a DSP implementation that is tuned for similar filter applications as the DPE.  

 

Table 4. FIR (4-TAP) Energy-Performance Benchmarks 

 Cortex-M3  Pleiades DPE 

Frequency (MHz) 20 14 10 

Throughput (cycles/FIR)  107 4 10 

Switched-Capacitance/FIR 4.92nF 126pF 17.4pF 

Energy/FIR 15,947pJ 285.2pJ 56.4pJ 

Energy-Delay/FIR (J-s x 10-18) 85,317 82 56 

 

Table 5. IIR Energy-Performance Benchmarks 

 Cortex-M3  Pleiades DPE 

Frequency (MHz) 20 14 10 

Throughput (cycles/IIR)  129 8 13 

Switched-Capacitance/IIR 5.93nF 465pF 25.6pF 

Energy/IIR 19,226pJ 1,046pJ 82.9pJ 

Energy-Delay/IIR (J-s x 10-18) 43,042 299 107 
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The throughput and energy values for the Pleiades DSP were derived from the 600nm 
implementation specified in [5] using the scaling calculations defined by the authors for their own 
benchmarking exercise. The energy calculations for the Cortex-M3 are derived from an 180nm reference 
design [7] [8].  A DSP library of filter functions designed specifically for the Cortex-M3 [8] was used to 
determine the throughput. The DPE energy and capacitance numbers are derived from an 180nm extracted 
netlist. All DPE benchmarks use 16-bit integer data tokens and 48-bit integer results. 

 
 

9. CONCLUSION 
The queued-stack dataflow-processing element presented in this paper is ideally suited for low-

energy data-driven deeply embedded applications such as remote sensing, medical implants and structural 
implants. The addition of cognitive processing capabilities to the sensor platform is necessary for these types 
of unattended applications where it is not feasible to routinely replace the batteries or sensors in these 
applications. The key metric for this class of embedded processing elements is energy-performance-volume 
where battery volume is the limiting factor as it determines the number of joules available for system 
operation. The micro-architecture of the dataflow-processing element is optimized such that the ratio of 
datapath transistors to control logic is maximized. The result as shown above is excellent energy-
performance characteristics. 
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