
International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol. 1, No. 3, November 2012, pp. 75~86
ISSN: 2089-4864  75

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

 Queued-Stack Dataflow Processing Element for a Cognitive
Sensor Platform

Mark McDermott
Department of Electrical and Computer Engineering, University of Texas at Austin

Article Info ABSTRACT

Article history:

Received Aug 5, 2012
Revised Oct 1, 2012
Accepted Oct 13, 2012

 This paper describes a Queued-Stack (QS) Dataflow Processing Element
(DPE) that is used in a cognitive sensor platform. The queued-stack is used
for buffering input data to the DPE and for storage of variables and results.
The queuing mechanism and dataflow protocol provides the capability to
compose multi-node computational systems where communication between
elements is via non-blocking FIFO channels. System composition is achieved
using synchronous dataflow tools such as SDF3 or Ptolemy. The dataflow-
processing element is implemented using single cycle micro-coded engine
where the ratio of datapath transistors to control logic is optimized for
programmable energy-performance sensitive applications.

Keyword:

Queued-Stack
Dataflow Processor
Composable System
Synchronous Dataflow
Cognitive Sensor Platform Copyright © 2012 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Mark McDermott
Department of Electrical and Computer Engineering,
University of Texas at Austin
1 University Station C0803, Austin, Texas 78712-0214
Email: mcdermot@ece.utexas.edu

1. INTRODUCTION

The next step in the evolution of intelligent sensors is towards cognitive sensors. Cognitive sensor
platforms have the capability to reason about both their external environment and internal conditions and to
modify their processing behavior and configuration in an ongoing effort to optimize their operation relative
to the device’s relevant optimization criteria [1]. This requires improved computational capability to perform
the additional tasks, within the same energy budget as an intelligent sensor system. General-purpose
computing platforms do not have the energy-performance characteristics needed for low energy sensor
systems. Hard-coded logic would provide the most optimal energy-performance but at the expense of re-
programmability. The basic architecture of the sensor platform is shown below in Figure 1. The processing
element used in this platform is implemented using an energy efficient stack-based microcoded engine.

Figure 1. Sensor Platform Architecture

  ISSN:2089-4864

IJRES Vol. 1, No. 3, November 2012 : 75 – 86

76

A key charac teristic of a sensor system is that it is primarily a reactive system where a change in the
value of a sensor input will automatically force recalculation of the values of other variables in the system.
The processing of sensor data in a reactive system is optimally done using a dataflow-processing element
(DPE) [2]. The DPE is “fired” once all the data tokens have been received. Upon completion of the
computation the dataflow-processing element is idled, waiting for the next tranche of tokens from the channel
node.

The passing of tokens is best accomplished using a queuing (FIFO) mechanism, which is insensitive
to the variable latency of the input sensor data; thus eliminating the need for the DPE to fetch and store the
sensor data on the stack (LIFO). This architecture merges a queuing mechanism into a stack-based processing
element. The result is queued-stack that is used to store input data from a sensor channel as well as results
from the computation operations in the datapath.

The merged queued-stack element provides an ideal mechanism for building a synchronous
dataflow system. Processing of data is triggered when the correct numbers of tokens are inserted into the
queue. The ability to simultaneously read or write to the queued-stack prevents unnecessary stalling of the
dataflow-processing element. The zero-overhead nested-looping, repeat function and the conditional
execution micro-operations result in excellent energy-performance efficiency.

This paper presents a unique implementation of a synchronous dataflow-processing element for use
in reactive systems. The queued-stack architecture and microcoded control provide optimal energy-
performance for energy limited intelligent/cognitive sensor platforms. The token-based channel
communication protocol provides the capability to compose complex systems of heterogeneous data-flow
processing elements.

2. SYSTEM COMPOSABILITY
As mentioned above the queued-stack architecture provides a mechanism to easily compose systems

by connecting processing nodes via channel nodes. The channel nodes implement a synchronous dataflow
protocol where data tokens are transferred from one node and consumed by another node using a non-
blocking FIFO [9]. Synchronous dataflow tools such as SDF3 [10] and Ptolemy [11] can be used to compose
and simulate the sensor system.

Figure 2 below shows a “composed system” consisting of a cluster of DPEs, sensor elements and
associated channel nodes, an output communications element and a debug element. This configuration is
used for basic dataflow processing of data from multiple sensors. The DPEs can be synthesized to have
heterogeneous computational capabilities based on the algorithmic requirements of the system. Each DPE
can be configured to have one or two input-QS elements depending on how many channels need to be
processed and what the storage requirements are for the algorithms being executed by the DPE.

Figure 2. Example of a “Composed System”

The channel nodes are used to connect a DPE (or clusters of DPEs) to the sensor element(s). The

channel nodes buffer the transactions from the sensors and forward the data tokens to the DPE. Each DPE
has an integrated output channel node that is used to connect the output of a DPE to the input of another
DPE.

IJRES ISSN: 2089-4864 

Queued-Stack Dataflow Processing Element for a Cognitive Sensor Platform (McDermott)

77

3. DATAFLOW PROCESSING ELEMENT
The processing element used for this platform is implemented as a stack-based microcoded engine

with advance features such as nested looping, conditional execution, repeat execution and a programmable
lookup table for reconfigurable functional operations. Figure 3 below shows a block diagram of the DPE
implemented using three QS elements and one output FIFO channel node. The input QS elements are used to
receive channel data from two sources or they can be configured such that one QS element is receiving data
while the other is processing data from a previous transaction. The Result-QS is used to store the higher
precision results of the datapath operations.

Figure 3. Dataflow Processing Element

The DPE is implemented using a parameterized synthesized model where the width and depth of the
stacks, functional units, and data-paths are determined during algorithmic development time. For systems that
are composed of multiple DPEs, it is feasible for each DPE to be configured for a task or group of tasks
during the synthesis process by selecting the optimal parameters.

The microcode storage is implemented using a standard single port ROM or WCS (writeable control
store) memory compiler. The WCS configuration is useful for systems where the microcode needs to be
updated from an external source such as flash memory [3].

4. QUEUED-STACK ARCHITECTURE

The Queued-Stack (QS) is implemented as a circular buffer that has two circular pointers, one to
track the LIFO (stack) data and the other one to track the FIFO (queue) data. A three-deep QS is shown
below in Figure 4. The FIFO pointer tracks data “inserted” into the queue from either the channel data or the
result data from the datapath operations. The LIFO pointer is used to track pushes and pops from the stack.
The QS can insert data into the queue while simultaneously pushing or popping data on/off the stack. This
allows channel data to be asynchronously inserted into the queue element while the computational engine is
processing data from a previous transaction.

PUSH

POP/INSERT PUSH

TOS

BOS

TOS

BOS

OUTPUT CHANNEL
DATA

IM
M
ED

IA
TE

 D
A
TA

RESULT_BUS

Input
Queued‐Stack

Result
Queued‐Stack

RESULT_BUS

RESULT_BUS

POP/INSERT PUSH

TOS

BOS Input
Queued‐Stack

RESULT_BUS

INPUT
CHANNEL DATA

Datapath

Output FIFO
(Channel Node)

RESULT_BUS

POP/INSERT

Micro‐Code Engine

Sequencer

G
P
IO

 IN
P
U
T

G
P
IO

 O
U
TP
U
T

RESULT_BUS

Op Queue

Events

Recirculate

INPUT
CHANNEL DATA

  ISSN:2089-4864

IJRES Vol. 1, No. 3, November 2012 : 75 – 86

78

The microcode engine handles the QS data management. The engine can select if the QS is available
to receive inserted data while the computational engine is active (“push mode”) or if the QS will fetch the
data from the channel once the computation task is completed (“pull mode”). Pull-mode allows the QS to be
used as a circular buffer to store intermediate data used in many filtering algorithms. Note: in pull-mode, the
output data must be stored in an output FIFO channel node to prevent stalling the processing element.

Figure 4. Three-deep Input Queued-Stack

As shown above in Figure 4, both the top-of-stack (TOS) data and the bottom-of-stack (BOS) data
can be accessed simultaneously. In addition, the pointers can be manipulated by the microcode to select data
anywhere in the circular buffer. For example, the LIFO pointer can be rotated five positions to the right and
the FIFO pointer can be rotated 5 positions to the left in a single instruction by executing a non-write POP
command, a non-write INSERT command with a REPEAT of 5 while executing a data path instruction and
storing the result in the RESULT-QS, the Input-QS, and the Output-FIFO.

Table 1 below shows the operations that the QS support. The basic operations include PUSH,
POP/POP_WR and INSERT that write data to either the TOS or BOS and selectively rotate the appropriate
pointers. The same operations can also be merged to provide the ability to store results to the TOS and BOS
in a single write cycle.

Table 1. Queued-Stack Operations

Operation Description

PUSH Rotate TOS pointer “right” and write result-bus value to new TOS

POP Rotate TOS pointer “left” (no write)

POP_WR Rotate TOS pointer “left” and write result-bus value to new TOS

INS Rotate BOS pointer “left” and write result-bus value to BOS

INS_NW Rotate BOS pointer “left” without writing

PUSH_NW Rotate TOS pointer “right” (no write)

TOP Write result bus value to TOS w/o rotating pointer

BOT Write result bus value to BOS w/o rotating pointer

TOP_BOT Write result bus value to TOS/BOS w/o rotating pointers

PUSH_INS Rotate both pointers and write result-bus value to TOS/BOS

POP_BOT Rotate TOS pointer “left” and write result-bus to BOS

POP_INS Rotate TOS pointer “left”, rotate BOS “left” and write result-bus to new BOS

POP_WR_BOT Rotate TOS pointer “left” and write result-bus to BOS and to new TOS

PUSH_BOT Rotate TOS pointer “right” and write result-bus to BOS and to new TOS

TOP_INS Rotate BOS pointer “left” and write result-bus to TOS and to new BOS

NOP No Operation

Channel Data

Read BOS

Read TOS

PUSH POP

INSERT

Write BOS

Write TOS

R
e

su
lt

B
u

s

Stack Pointer
Register

Stack Pointer
Register

Stack Pointer
Register

Queue Pointer
Register

2RD/2WR
RAM Word

2RD/2WR
RAM Word

2RD/2WR
RAM Word

Queue Pointer
Register

Queue Pointer
Register

IJRES ISSN: 2089-4864 

Queued-Stack Dataflow Processing Element for a Cognitive Sensor Platform (McDermott)

79

5. DPE DATAPATH
The DPE datapath is composed of five major elements: shifter, multiplier, adder, logical unit (LU)

and a special function unit (SFU). The latter two elements can be eliminated during system synthesis if they
are not needed. Figure 5 below shows the datapath configuration including the multiplexing units that control
the data flow through the datapath.

Figure 5. DPE Datapath

The datapath multiplexers have latched outputs, which can store intermediate data and are used to
prevent spurious transactions propagating through the shifter-multiplier-adder paths thus reducing power.
The Write-Back-MUX multiplexes data from the Adder, SFU, logical unit and the GPIOs to the result bus.
The result bus is connected to the three QS elements and the output FIFO via the multiplexing scheme shown
above in Figure 3. The Result-QS is used to store the results of the datapath transactions and is synthesized to
be the width of the Adder. An Input-QS can also be used to store results, however it is limited to storing data
that is the width of the incoming channel data. Table 2 below shows the operand sources for the
computational instructions.

Table 2. Datapath Operand Sources

Shifter Multiplier/LU/SFU Adder

TOS/BOS IQS1 SHIFTER_A/SHIFTER_B SHIFTER_A/SHIFTER_B

TOS/BOS IQS2 TOS/BOS IQS1 TOS/BOS IQS1

TOS/BOS RQS TOS/BOS IQS2 TOS/BOS IQS2

IMMEDIATE DATA TOS/BOS RQS TOS/BOS RQS

 IMMEDIATE DATA IMMEDIATE DATA

 MULTIPLIER

The functions that the SFU performs are determined during the algorithmic design phase. Typical
functions include: table-lookup for sensor recalibration, interpolation, linearization, averaging, fuzzy logic
calculations, data compression, data fusion, time stamping, edge detection, threshold detection, period
measurements, etc.

The microcode engine individually controls each element in the datapath resulting in a large
combination of parallel operations including: Shift-Multiply-Add, Shift-Multiply-Saturating Add, Multiply-
Add, Multiply-Saturating Add, Shift-Add, Shift-Saturating Add, Arithmetic & Logical Shift, Bit Clear, Bit
Set, Boolean Logic functions, table lookup, interpolation, linearization, absolute value, etc.

  ISSN:2089-4864

IJRES Vol. 1, No. 3, November 2012 : 75 – 86

80

6. MICROCODE ENGINE
The decision to use a microcoded instruction format was primarily driven by the fact that the DPE is

not pipelined and there are a number of parallel operations that must be performed in a single cycle. This
eliminates the need for an instruction decoder and sequencer to control the various units in the DPE. This
results in an optimal ratio of control logic to datapath logic.

There are four control fields in the microcode word as shown below in Figure 6.

Figure 6. Microcode Control Fields

The first field defines specific micro-operations within the microcode engine. These include nested

looping, repeat function, branching and conditional execution. Three levels of hardware nested looping [4]
are supported. All nested loop offsets are backwards while branch offsets can be both forwards and
backwards. The branch operation utilizes the offset field and the loop count fields, which extends the range.
The repeat operation further modifies the program flow by providing the capability to execute multiple
nested loops. This is useful for operating on multi-dimensional data arrays. There are three repeat counters,
one for each level of nesting. A state machine tracks the nesting context of all active loops. Most microcode
operations can be conditionally executed. The exceptions are loop returns and the halt instruction.
Conditional execution uses condition codes derived from the arithmetic units in the datapath and the SFU.

The second field is the queued-stack control. A typical operation is shown below in Figure 7. During
the first half of the cycle the QS provides the operands to datapath and the second half of the cycle the
address of the QS can be modified for the write operation. For example if a PUSH operation is performed the
FIFO pointer is “shifted right” to point to next location on the stack. The result data can be written to this
location at the end of the cycle. The pointers in the IQS units and the RQS unit always point to valid data and
are only modified during a write cycle.

Figure 7. Typical QS read-write Cycles

REPEAT CNT

QS1 CTL

OFFSET COND CODEOP CODEField 1

QS2 CTL RS CTL PUSH POP INSERTField 2

SHFT1 CTL SHFT2 CTL MULT CTL ADD CTL LUT/BIT CTLField 3

IMMEDIATE DATAField 4

MUX CTL

GPIO CTL OUTPUT FIFO CTL

LOOP CNTR #

CLOCK

READ_MUXES Hold Source BusDrive Source Buses

READ/EXECUTE CYCLE PUSH, POP, INSERT CYCLE

Drive Result BusesHold Result Buses

μOP

DATAPATH

Latch QS Data

POP, PUSH, INSERT

Address to QS

IJRES ISSN: 2089-4864 

Queued-Stack Dataflow Processing Element for a Cognitive Sensor Platform (McDermott)

81

The third field controls the datapath using “one-hot” control bits. The bits control the multiplexers
and the functional units. As can be seen from Figures 3, 4 and 5, there are 10 multiplexers that control the
flow of data through the functional units, the write-back mux and the QS elements.

The fourth field is used for immediate data and to address data in the lookup table. The width of this
field is determined by the width of the microcode word. In some implementations of the DPE, sub-fields in
the micro-engine control field can be used to extend the width of word.

The block diagram of the micro-engine is shown below in Figure 8 and consists of four components:
WCS, micro-address generation, operation queue and a finite state machine controller.

Figure 8. Block Diagram of The Microcode Engine

The micro-engine is controlled via a 4-bit micro-opcode field. The micro-engine opcodes supported
are shown below in Table 3. There are two basic execution modes: normal and conditional. In normal mode
all micro-operations execute independently of the value of the condition codes. In conditional execution the
value of the condition codes from the previous cycle are compared with value in micro-code word. If the two
codes are not identical the micro-operation is not executed.

Table 3. Micro-Engine Opcodes

OPCODE REPEAT OPERATION
EXEC Y Normal Execution

COND_EXEC N Conditional Execution
WFE N Wait for Event
JMP N Jump to address specified in IMMED_DATA field

JUMP_HALT N Jump to address specified in IMMED_DATA field THEN Halt
LOOP_BACK Y Loop back for Loop # {1,2,3}

BRA N Branch Unconditionally
BR_WB_GT N Branch Writeback GREATER THAN REFERENCE DATA
BR_WB_LT N Branch Writeback LESS THAN REFERENCE DATA
BR_WB_EQ N Branch Writebakc EQUAL toREFERENCE DATA
BR_SFU_GT N Branch SFU result GREATER THAN REFERENCE DATA
BR_SFU_LT N Branch SFU result LESS THAN REFERENCE DATA
BR_SFU_EQ N Branch SFU result EQUAL to REFERENCE DATA

TXFR N Transfer Output FIFO data to Channel

The finite state machine (FSM) controls the nested looping and repeats functions. Three levels of
nesting looping are supported in the base architecture. The repeat function is used to control the number of
times a loop is repeated. There is a repeat counter for each nested loop that is loaded from the RPT_CNT
field. The OFFSET field in the microcode is used to “loop backwards” in the loop when the LOOP_BACK
opcode is executed. The RPT_CNT and OFFSET fields are used by the BRANCH opcode to increase the
twos-complement offset range of the branch into the micro-ROM.

Datapath
Control

Zero

One

FF

RPT OFFSET DATAPATH CONTROL

Micro‐engine
Instruc on

FF

OP LOOP

uADDR

FSM

IMM Op Queue

Events

Recirculate

  ISSN:2089-4864

IJRES Vol. 1, No. 3, November 2012 : 75 – 86

82

Figure 9 below shows a typical nested looping microcode sequence. In this sequence there are two
nested loops and one conditionally executed branch loop. The nested loops execute 10 times before the
branch instruction is executed. Note that the microinstructions are executed in parallel, resulting in zero-
overhead loop and branch instructions. Once the conditional branch is not taken the JUMP_HALT
microinstruction is executed.

Figure 9. Typical “Nested Looping” Microcode Sequence

The JUMP_HALT is a merged microinstruction that jumps to address specified and halts the micro-
engine to wait for the next “fire” signal”. The microcode engine is “fired” when the new channel data is
inserted into the queued-stack. Note: the micro-engine clocks are disabled during idle mode resulting in
minimal power dissipation.

The microcode engine contains an operation queue that is used to register events and trigger
microcode operations in response to the events. The operation queue provides a mechanism to interrupt the
normal flow of the microcode at specific entry points. The queue is circular and can also be used to store a
sequence of macroinstructions for systems that use ROM storage for the microcode. The FSM controls the
flow of events/macro-instructions to the micro-engine.

As mentioned above, the microcode storage can be either read-only-memory (ROM) or writable-
control-store (WCS) based. In either case the clocks to the storage element are controlled by the FSM. For
non-looping repeat functions, the latched microcode word is accessed instead of accessing the memory
element. This provides additional energy savings as it eliminates pre-charge clocking energy. The WCS is
loaded via the JTAG interface and is used in systems where overlaying of microcode is needed due to the
size of the code or for debugging microcode before the microcode is committed to ROM.

7. DPE OPERATION EXAMPLES

The DPE micro-architecture is designed to primarily support sensor data conversion and
conditioning. Typical operations include: digital filtering, decimation, linearization, averaging, data
compression, feature extraction, data fusing, edge detection, threshold detection, etc. Figure 11 below shows
an FIR filter configuration that can be implemented with five microinstructions and executes in ten clock
cycles.

IQS-1 is used to store the incoming data tokens from the channel node. The tokens are inserted at
the bottom of the stack. The old tokens are over-written when the BOS pointer recirculates. IQS-2 is used to
store the filter variables for each of the stage multipliers. The addition results are accumulated in the RQS
element. The filter calculations proceed from oldest data token to the most recent. The TOS pointers for IQS-
1 and IQS-2 are “popped” to point at the next variable and token for each multiplication step.

OFFSET=‐0 RPT CNT = 5 FIELD 2, 3, 4 OPCODE ENTER LOOP 1 PC = 0 LP CNTR = 1

OFFSET=‐0 RPT CNT = 0 PC = 1 LP CNTR = 0

OFFSET=‐0 RPT CNT = 2 PC = 2 LP CNTR = 2

OFFSET=‐0 RPT CNT = 0 EXEC PC = 3 LP CNTR = 0

OFFSET=‐2 RPT CNT = 0 LOOP_BACK PC = 4 LP CNTR = 0

OFFSET=‐5 RPT CNT = 0 PC = 5 LP CNTR = 0

BRANCH OFFSET=‐6 LP CNTR = 0

EXEC

EXEC

LOOP_BACK

BRA COND PC = 6

In
n
er

 R
P
T
Lo

o
p

O
u
te
r R

P
T
Lo

o
p

O
u
te
r C

o
n
d
.B
ra
n
ch

 L
o
o
p

FIELD 2, 3, 4 OPCODE

FIELD 2, 3, 4 OPCODE

FIELD 2, 3, 4 OPCODE

FIELD 2, 3, 4 OPCODE

FIELD 2, 3, 4 OPCODE

FIELD 2, 3, 4 OPCODE

ADDRESS LP CNTR = 0 JUMP_HALT PC = 7 FIELD 2, 3, 4 OPCODE

IJRES ISSN: 2089-4864 

Queued-Stack Dataflow Processing Element for a Cognitive Sensor Platform (McDermott)

83

Figure 11. FIR Filter Configuration

The data storage for the FIR filter calculations is shown below in Figure 12.

Figure 12. Data Storage For FIR Filtercalculations

The microinstructions to execute one filter cycle are:

1: ADD, ZERO, ZERO, ; ZERO -> ACC
 POP_INS_RQS ; INSERT AT BOS RQS and POP TOS

2: MULT, TOS_QS1, TOS_QS2, ; A(3,2,1) * X(N-3,2,1)
 ADD, BOS_RQS, ; + ACC
 WB[BOS_RQS], ; WRITEBACK-> ACC
 POP_QS1, POP_QS2, ; POINT AT NEW VARIABLE
 RPT=3 ; REPEAT 3 TIMES

3: MULT, TOS_QS1, TOS_QS2 ; A(0) * X(N)
 ADD, BOS_RQS, ; + ACC
 WB_FIFO, ; WRITEBACK TO FIFO ELEMENT
 POP_QS1 ; CONSUME X(N)

4: PUSH_NW_QS1, PUSH_NW_QS2, ; RESET VARIABLE POINTERS
 RPT=4 ; REPEAT 4 TIMES

5: JUMP_HALT 1; ; JUMP and WAIT FOR TOKEN

The first microinstruction inserts a ZERO into the BOS of the Result-QS, which is used as the
accumulator for MULT-ADD instructions. The second microinstruction is repeated 3 times and executes a
MULT-ADD of the last 3 stages of the filter, accumulating the result in the RQS. The third microinstruction
does a MULT-ADD of the new data token and the A(0) filter variable and issues a POP command to
consume the X(n) variable. The result is also sent to the output FIFO using WB_FIFO command in the same
microinstruction. The fourth microinstruction resets the TOS pointers to point to the A(3) filter variable and

Z-1 Z-1X(n)
Z-1

X
A(0)

X
A(1)

X
A(2)

X
A(3)

+ + + +
Y(n)

X(n-1) X(n-2) X(n-3)

X(n)

X(n-1)

X(n-2)

X(n-3) TOS

X(n-4)

BOS

INSERT

IQS-1

A(0)

A(1)

A(2)

A(3)

?????

BOS

INSERT

IQS-2

ACC

ACC(-1)

ACC(-2)

ACC(-3)

TOS

ACC(-4)

BOS

INSERT

RQS

TOS

  ISSN:2089-4864

IJRES Vol. 1, No. 3, November 2012 : 75 – 86

84

the new X(-3) data token. The JUMP_HALT microinstruction branches back to the first instruction that
clears the accumulator and waits for the next data token. Once the X(n) variable is inserted into the BOS of
IQS-1. The channel node issues a FIRE signal to the DPE and the sequence repeats itself.

Figure 13 below shows a Bi-Quad IIR filter configuration that can be implemented in 9
microinstructions and 13 clocks.

Figure 13. IIR filter Configuration (Bi-Quad)

There are two summing nodes. Each one is a separate entry in the RQS. The first sum is inserted
into the bottom of the RQS. It will become the V(n-1) variable the next time the filter is evaluated. The
second sum replaces the V(n-2) variable once it is used. The data storage for the IIR filter calculations is
shown below in Figure 14.

Figure 14. Data Storage For IIR Filter Calculations

The microinstructions to execute one IIR filter cycle are:

1: MULT, TOS_RQS, TOS_QS2, ; V(N-2) * A(2)
 WB[BOS_RQS], ; WRITEBACK -> ACC_1
 INSERT_RQS, ; INSERT BEFORE WRITE
 POP_QS2, ; POINT @ A(1)
 POP_RQS ; POINT @ V(N-1)

2: MULT, TOS_RQS, TOS_QS2, ; V(N-1) * A(1)

Z-1

X(n)

X

B(1)

+

+ +
Y(n)V(n)

Z-1

X

B(2)

X

A(1)

X

A(2)

+

X

B(0)

+

+
V(n-1)

V(n-2)

B(0)

B(1)

B(2)

A(1)

A(2)

BOS

INSERT

IQS_2

TOS

X(n)

X(n-1)

X(n-2)

X(n-3)

X(n-4)

TOS/BOS

INSERT

IQS_1

ACC(n)

V(n-1)

V(n-2)
TOS

BOS

INSERT

RQS

IJRES ISSN: 2089-4864 

Queued-Stack Dataflow Processing Element for a Cognitive Sensor Platform (McDermott)

85

 WB_BOS_RQS, ; WRITEBACK -> ACC_1
 POP_QS2, ; POINT @ B(2)
 PUSH_NW_RQS ; POINT @ V(N-2)

3: ADD, BOS_RQS, BOS_QS1, ; X(N) + ACC
 WB[BOS_RQS] ; WRITEBACK -> ACC_1

4: MULT, TOS_RQS, TOS_QS, ; V(N-2) * B(2)
 WB[TOS_RQS], ; WRITEBACK -> ACC_2 (V(N-2))
 POP_QS2 ; TOS => @ B(1)

5: POP_RQS ; POINT AT V(N-1)

6: MULT, TOS_RQS, TOS_QS2, ; V(N-1) * B(1)
 WB[TOS_RQS], ; WRITEBACK -> ACC_2
 POP_QS2 ; POINT @ B(0)

7: MULT, BOS_RQS, TOS_QS2, ; ACC_1 * B(0)

 ADD, TOS_RQS ; + ACC_2
 WB[FIFO] ; WRITEBACK TO FIFO ELEMENT
 POP_RQS ; POINT AT NEW V(N-1)

8: PUSH_NW_QS2, ; RESET VARIABLE POINTER
 RPT=5 ; REPEAT 5 TIMES

9: JMP_HALT 1; ; JUMP and WAIT FOR TOKEN

8. ENERGY-PERFORMANCE ANALYSIS AND RESULTS

The energy-performance analysis of the DPE was done using an 180nm mixed-signal process. The
DPE logic was synthesized and the layout generated using DCT/ICC from Synopsys using the typical process
corner at 85°C. The layout parasitics were extracted using Calibre from Mentor Graphics. The timing and
energy numbers were then derived using Prime Time and Prime Time-PX respectively.

Tables 4 and 5 below show the energy-performance for the DPE, a reconfigurable DSP (Pleiades)
developed at UC-Berkley [5] and the Cortex-M3 from ARM [6]. The Cortex-M3 is widely used in embedded
designs as both a general-purpose processor and as a DSP. The reconfigurable DSP from UCB is an excellent
example of a DSP implementation that is tuned for similar filter applications as the DPE.

Table 4. FIR (4-TAP) Energy-Performance Benchmarks

 Cortex-M3 Pleiades DPE

Frequency (MHz) 20 14 10

Throughput (cycles/FIR) 107 4 10

Switched-Capacitance/FIR 4.92nF 126pF 17.4pF

Energy/FIR 15,947pJ 285.2pJ 56.4pJ

Energy-Delay/FIR (J-s x 10-18) 85,317 82 56

Table 5. IIR Energy-Performance Benchmarks

 Cortex-M3 Pleiades DPE

Frequency (MHz) 20 14 10

Throughput (cycles/IIR) 129 8 13

Switched-Capacitance/IIR 5.93nF 465pF 25.6pF

Energy/IIR 19,226pJ 1,046pJ 82.9pJ

Energy-Delay/IIR (J-s x 10-18) 43,042 299 107

  ISSN:2089-4864

IJRES Vol. 1, No. 3, November 2012 : 75 – 86

86

The throughput and energy values for the Pleiades DSP were derived from the 600nm
implementation specified in [5] using the scaling calculations defined by the authors for their own
benchmarking exercise. The energy calculations for the Cortex-M3 are derived from an 180nm reference
design [7] [8]. A DSP library of filter functions designed specifically for the Cortex-M3 [8] was used to
determine the throughput. The DPE energy and capacitance numbers are derived from an 180nm extracted
netlist. All DPE benchmarks use 16-bit integer data tokens and 48-bit integer results.

9. CONCLUSION
The queued-stack dataflow-processing element presented in this paper is ideally suited for low-

energy data-driven deeply embedded applications such as remote sensing, medical implants and structural
implants. The addition of cognitive processing capabilities to the sensor platform is necessary for these types
of unattended applications where it is not feasible to routinely replace the batteries or sensors in these
applications. The key metric for this class of embedded processing elements is energy-performance-volume
where battery volume is the limiting factor as it determines the number of joules available for system
operation. The micro-architecture of the dataflow-processing element is optimized such that the ratio of
datapath transistors to control logic is maximized. The result as shown above is excellent energy-
performance characteristics.

REFERENCES
[1] A. Howard and E. Tunstel, “Development of Cognitive Sensors”, NASA TECH BRIEF Vol. 26, No. 4
[2] Bruno Preiss and V.C. Hamacher, “Data flow on a queue machine”, ISCA '85 Proceedings of the 12th annual

International Symposium on Computer Architecture, ISBN:0-8186-0634-7
[3] Phillip Koopman, “Writable instruction set, stack oriented computers”, Proceedings of the 1987 Rochester Forth

Conference.
[4] Ya-Lan Tsao, et al, “Hardware nested looping of parameterized embedded DSP core”, IEEE International SOC

Conference, pp. 49-52, Sep 17, 2003
[5] Arthur Abnous, et al, “Evaluation of a low-power reconfigurable DSP architecture”, Proceedings of the

Reconfigurable Architectures Workshop, Orlando, Florida, USA, March 1998.
[6] Cortex-M3 Technical Reference Manual, ARM Corporation, 2010
[7] Cortex-M3 implementation specifications, http://www.arm.com/products/processors/cortex-m/cortex-m3.php
[8] “Cortex-M3 DSP library filter functions” Application Note STM32F10x, ST Microelectronics, 2010
[9] E. A. Lee and D. Messerschmitt. “Synchronous data flow”,Proceedings of the IEEE, 75(9): pp. 1235–1245, 1987.
[10] S. Stuijk, M. Geilen, and T. Basten, "SDF3: SDF For Free," in 6th International Conference on Application of

Concurrency to System Design, ACSD 2006, Proceedings. IEEE, pp. 276-278, June 2006.
[11] E. A. Lee, H. Zheng, "Leveraging Synchronous Language Principles for Heterogeneous Modeling and Design of

Embedded Systems," EMSOFT '07, September 30 - October 3, 2007, Salzburg, Austria.

BIOGRAPHY OF AUTHOR

Mark McDermott is adjunct faculty member in the ECE Department at the University of Texas
where he teaches graduate level courses in VLSI design, Embedded System Design and System-
on-Chip design. His research interests are in low-energy embedded system design.

