International Journal of Reconfigurable and Embedded Systems (1JRES)
Vol. 1, No. 2, July 2012, pp. 59~66
ISSN: 2089-4864 d 59

FPGA Implementation of a 64-Bit RI SC Processor Using VHDL

Imran Mohammad®, Ramananjaneyulu K?
L2QIS College of Engineering, Andhra Pradesh, INDIA
Emaillimranmdcom@gmail.conframu36nba@gmail.com

Article Info

ABSTRACT

Article history:

Received Apr 22, 2012
Revised Jun 24, 2012
Accepted Jul 6, 2012

Keyword:

BIST

FPGA

RISC Processor
SoC

VHDL

In this paper, the Field Programmable Gate ArfeGA) based 64-
bit RISC processor with built-in-self test (BISBature implemented
using VHDL and was, in turn, verified on Xilinx IS&mulator. The
VHDL code supports FPGA, System-On-Chip (SOC), &partan

3E kit. This paper also presents the architectdisga path and
instruction set (IS) of the RISC processor. Theb&4processors, on
the other hand, can address enormous amounts obmer to 16

Exabyte’s. The proposed design can find its apfdina in high

configured robotic work-stations such as, portgddag gaming kits,
smart phones, ATMs.

Copyright © 2012 Institute of Advanced Engineering &cience.

All rights reserved.

Corresponding Author:

Imran Mohammad,

QIS College of Engineering,
Andhra Pradesh, INDIA

Email: imranmdcom@gmail.com

1. INTRODUCTION

In today’s technology, RISC Processors are plagipgominent and the RISC with BIST feature is
one of the more dominant test pattern which caniges, in system testing of the Circuit-Under-T@ET).
This is crucial to the quality component of testi8JST design is becoming more complicated with the
increase of IC size.

Though the RISC has less instruction set, as &bthprocessing size increases then the testrpatte
becomes complicated and the structural faults amtained high. And BIST is highly reliable, lowsto
BIST is beneficial in many ways: First, it can redudependency on external Automatic Test Equipment
(ATE). In addition, BIST can provide at speed, ystem testing of the Circuit-Under-Test (CUT).

This is crucial to the quality component of testiddso, BIST can overcome pin limitations due to
packaging, make efficient use of available extrg erea, and provide more detailed information albe
faults present. In our thesis, a 64 bit RISC preoeswith limited functionality is designed with an
architecture that supports BIST.

The proposed design is done by implementing MICAinfMal Instruction Set Computer
Architecture) architecture. The design is implerednon Xilinx ISE 10.1i Simulator and programmed by
using VHDL. The programmed code is supports FPGArtap-3E Kit. However, contemporary CAD tools
allow the designer of hardwired control units alinas easy as micro programmed ones. This enaldes th
single cycle rule to be enforced, while reducirangistor count.

In order to facilitate the implementation of masstruction as register-to-register operations, ALU
is analyzed and an exhaustive set of test patieihsveloped.

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

60 a ISSN: 2089-4864

2. ARCHITECTURAL DESIGN - IMPLEMENTATION

In this session, Architecture, Data path, and tiséruction set are described. The FPGA based RISC
Processor has its architecture with BIST, contrad iming module is a Hardware module. The ALU is
divided into two parts as: The Operational Architee (OA) and the Testing Architecture (TA).

Operational Architecture (OA) does the actual apen of the ALU. It has five units, 4-bit Carry
Look Ahead adder (CLA), and a 4-bit AND, OR, XORJIANVERTER gates. There is a PreCLA to prepare
the inputs based on the arithmetic operation tddree. There is a MUX which uses the select pinsetect
one of the results from the above five units.

Testing Architecture (TA), which comes into playlyuduring testing, has a ROM which has the
discovered test patterns stored in. There is ameadddecoder to select which of the test patteifisbes
applied. There is a TestMUX, which depending onvhiele on the TestMode pin will present the testepa
or the actual inputs to be operated upon, to ther@n Architecture.

r'y
Data Bus

Dala Bus
Buler |
g

inlemal Data Bus
o
Reeg’:l?er Instruction Registor
Register Muliplexer

3 L 3 0 !
Fiag _.| Stack
Flip Flops 3 Muttiplexet
Instruction Program Counter
Decoder and
Maching =
Cycle
Encoding

Accumulator

1

2 3

Level No. 1

Level No, 2

Stack Pointar

Level No. 3

Index Begister Select

Address
Stack

Decimal 14 15
Adjust

I Seratch
Pad

Timing and Gontrol

ROM Control _ RAM Cantrol Test Sync_ Ciocks
Reset

CMANM M RAM Taat Sune Phi PO

Figure 1. 64-bit RISC Processor Architecture.

Table 1: 33 Instruction Set (1S) for 64 bit RIS@&essor

INSTRUCTIONS DESCRIPTION
ADD - Arithmetic ADD dest. Src: Adds “src” to “dest” and replacingtbriginal contents of “destination”.
Addition Both operands are binary.
IAND - Logical AND ADD dest. Src: Performs a logical AND of the two opelareplacing the destination with
result.
SKIPZ — Skip on Zero Skipz, Skips one clock cycle when data entered is zero.

LTR — Load Task Register (286+LTR src; Loads the currnt task register with theigadpecified in “src”.

privileged)

LSL — Load segment Limit (286+ LSL dest. Src: Loads the segment limit of a seleattw the destination register if the

protected) selector is valid and visible at the current pagi level. If loading is successful the Zero
Flag is set, otherwise it is cleared.

INOT - one's complement negationNOT dest; Inverts the bits of the “ dest” operand fatting the 1 s complement.

(Logical NOT)

NEG — Two’s complement negation ~ NEG dest; Subtracts the destination from Oand sawe2sbomplement of “dest” back into

“dest”.

POP — POP dest; Transfers word at the current stack topgB3go the destination then increments

Pop Word off Stack SP by two point to the new stack top. CS is nadlal destination.

PUSH — PUSH src

Push Word onto Stack PUSH immed (80188+only): Decrements SP by the sizdefaperand (two or four, byte
values are sign extended) and transfers one wond $ource to the top (SS: SP).

SETS- SETS dest; Sets the byte in the operand tol if the Slgg is set, otherwise

Set if Signed(368+) Sets the operand to 0.

ROL — Rotate Left ROL dest, count ;Rotates the bits in the destinatiothé left count” times with all data

IJRES Vol. 1, No. 2, July 2012 : 59 — 66

IJRES

ISSN: 2089-4864 a 61

ROR - Rotate Right

SAL / SHL — Shift Arthemetic Left /

Shift Logical

SAR - Shift Arthemetic Right
SETC — Set if Carry (386+)
SETO — Set if Overflow

STC — Set Carry

ST1-

Set Interrupt Flag (Enable Interrupt)

SUB —
Subtract

VERR -
Verify Read
(286+protected)

CLC -
Clear Carry

IXOR —
Exclusive OR
INAND —
Logical NAND
ADDI —

Add Immediate

HLT -

Halt CPU

SKIPN —

Skip on Neg.

VERW —

Verify Write

(286+protected)

CLR -

Clear

LD — Loads Data from Adress

ST — Stores Data to Adress
ISLL —

Shift Logical Left

JAL — Jump and Link

BR — Branch

pushed out the left side re-entering on the righe Carry Flag will contain the value of
the last bit rotated out.

ROR dest, count; Rotates the bits in the destinatiahe right “count”

Times with all data pushed out the right side reeeng on the left. The Carry Flag will
contain the values of the last bit rotatd out.

SAL dest, count

SHL dest, count; Shifts the destination left by “cdhbiis with zeroes

Shifted in on right. The carry Flag contains thet lait shifted out.

SAR dest, count; the destination right by “count” hitgh the current sign bits replicated
in the leftmost bit. The carry Flag contains the kit shifted out.

SETC dest; Sets the byte in the operand to 1 if the/dkag is set,

Otherwise sets the operand to 0.

SETO dest; Sets the byte in the operand to 1 if theflove flag is set,

Otherwise sets the operand to 0.

STC; Sets the Carry Flag to 1.

ST1; Sets the Interrupt Flag to 1, which enables reitmn of all hardware, interrupts. If

an interrupt is generated by a hardware devicezND of interrupt (EOI) must also be

issued to enable other hardware interrupts ofdn@esor lower priority.

SUB dest,src; The source is subtracted from the degtimand the result is stored in the
destination.

VERR src; Verifies the specified segment selector igdvand is readable at the current
privilege level. If the segment is readable, theoZdag is set, otherwise it is cleared.

CLGC; Clears the Carry Flag.

XOR dest, src; Performs a bitwise exclusive OR ofdperands and returns the results in
the destination.

Inand dest, src; Performs a bitwise logical NAND of ttveo operands replacing the
destination with the result.

ADD dest, src; Adds “ src” to “dest” and replacing thriginal contents of “dest” Both
operands are binary. It performs immediate additien takes half clock cycle than in add
Operation.

HLT; Halts CPU until RESET line is activated, NMI oaskable interrupt received. The
CPU becomes domant but retains the CS: IP for fattart.

Skipn; Skipsone clock cycle when NEG instruction is exedu

VERW Src; Verifies the specified segments selectoraitdvand is rata bleat the current
privilege level. If the segment is writable, the@€&lag is set, otherwise it is cleared.

Clr; It clears every flag used in processor.

Id dest; Transfer data at the current address talé¢kgnation then increments address to
the point of new address.
St src; Tranfers data from destination to the givetiress.
SAL dest, count
SHL dest, count; Shifts the destination left by “cdusits with zeroes shifted in on right.
The Carry Flag contains the last bit shifted out.

dest, src; Jumps the pointer femurce to destination . Mainly used in selectiorthef
desired register at the moment.
Br dest; Responsible for disabling the write enabtadgisters.

The architecture and data path for the proposeigmi@se shown Fig. 1 and 2, respectively. Table 2
gives the salient technical features of the proggsecessor. Table 1 provides detailed descripgfoentire

33 instruction set.

Table 2: Salient Technical Features of RISC gssor
Features of RISC processor

Architecture MICA

Instructions 33bit

Instruction Register 32 bit
Address Counter 32 bit
Data memory 64 bit
Data bus 64 bit
Address bus 32 bit

FPGA Implementation of a 64-Bit RISC Processor g&/iiIDL (Imran Mohammad)

62

ISSN: 2089-4864

3.

blue: signals to outside world

control signals latched by datain => CPU_S2 aluMode
o
control signals driven by CPU_S1 for opcode sela
latching 8 o
Register
resutt
ho MU
R1 selv
adrBus
= \ bbus
seb _)
R3 8
imm
R4
RS i L g
imm carryln
R]
R7=PC
selm)
8| "
dstBus ccTest = reg’ Flags
dstCk k]
fagei
ccMode carryUse flagUpdate
W”M;:_‘ dataln | | dataOut
rd wr adrBus

Figure 2. Data paths of 64 — RISC Processor

SYNTHESISREPORT

Device Utilization Summary

Logic Utilization
Total Number Slice Registers
MHumber used as Flip Flops
Mumber used as Latches
Mumber of 4 input LUTs
Logic Distribution
Mumber of occupied Slices
MHumber of Slices containing only related logic
Humber of Slices containing urrelated logic
Total Number of 4 input LUTs
Mumber uzed as logic
MNumber used s a route-thiu
Hurnber used for Dual Port RAMs
Hurnber used for 3241 RAMs
Murnber of banded |0Bs
Humber of GCLKs
Total equivalent gate count for design
ditional JTAG gate count for I0Bs

Used
B30
294
eits
331

68,507
3,360

Available
9312

9312

4,656
2189
2189
3312

a2
A

Utilization Note[s]

7%

Figure 3. Synthesis report.

e

—
*
—
;=]
—
—
o
—_—
p—
s
L
—_—
—
—

Figure 4. Routing Of RISC Processor

IJRES Vol. 1, No. 2, July 2012 : 59 — 66

IJRES ISSN: 2089-4864 a 63

Figure 5. Floor Planning for RISC Processor

4. SIMULATION RESULTS

100000 ns I 00 600 w00
allcl

_I.JJJJJJJJJJLLLLLLLLLLLLLLLLLLLLLLLLll T
I

Figure 6. Simulation of top module with central ggesing unit inputs

Now:
100000 ns

Figure 7. Simulation results of general purposésteg

FPGA Implementation of a 64-Bit RISC Processor g&/iiIDL (Imran Mohammad)

64 a ISSN: 2089-4864

Now: |
100000 ns i

Figure 9. Simulation results of 33 instructions ameimory module

The above results show the simulation of 64 bit®RE3ocessor. It has clock and reset signal are the
input for the top module shows in 6. It consistadf6 general purpose register of 64 bit size whicdhown
in 7. And the operation of arithmetic logic unittiviprogram counter is shown in 8. The instructieh s
having 33 instructions and the memory module showiRigure 9 and the total processor result is oleti
by combining all the results which is verified upiMilinx ISE simulator

5. APPLICATIONS
The proposed design can find its applicationsuito@ation, high configured robotic work-stations
such as, portable pong gaming kits, smart phonesd&r Machines, ATMs, bottling plant, etc.

IJRES Vol. 1, No. 2, July 2012 : 59 — 66

IJRES ISSN: 2089-4864 a 65

Bottles start filling from the right side and boxsrt to move from the left side. Here four tracifs
bottles are used simultaneously therefore pacldnmade of four bottles. When bottle reaches tofdheth
position, box moves to the first position. Afteathbottle is dropped in the box and hence, boxeaamne
position ahead. In this way, when box is at thh fifosition, signal ‘Ib’ is set to ‘1’ indicating tlift the box.

5.1 Flow Chart for bottling Plant application

Give Signal to Lift
the Box (b= 1)

L
Figure 10. Flow chart for bottling plant

5.2 Algorithm for bottling Plant application:

a=1l, b=7, weight=0

loop atill a =8
a = atl; wait for 15 secs
If (a=4) t hen
drop bottle in box
a = a-1;
End If;
If (a =5) then
report error in bottle nachine
End If;
End | oop;
loop b till b =5
b = b+1l; wait till weight =1
If (b =5) then
given signal to left box;
b = b-1;
End If;
If (b =6) then
report error in packing machine
End if;
End | oop

6. CONCLUSION

The 64-bit RISC Processor with 33 instructionsa®t MICA (Minimal Instruction Set Computer
Architecture) architecture has been designed aodnitbe implemented on FPGA. The design is verified
Xilinx ISE 10.1i simulator and programmed by usMigDL. The programmed code can be implemented on
FPGA Spartan-3E Kit. ALU is analyzed and an exhaastet of test patterns is developed. Future walk
be added by increasing the number of instructiorss raake a pipelined design with less clock cycles p
instruction and more improvement can be addedadriuture work.

REFERENCES

[1] Samuel O. Aletan,”An Overview of RISC Architer#l, Proc. Symposium on Applied Computing, 1992 1fpl2.

[2] Design and Implementation of a 64-bit RISC Pssce using VHDL, 2009 IEEE.

[3] Design and Implementation of a 64-bit RISC Pssce using System On Chip (SOC), 2011, IJCSCN, 360-370.

[4] Dal Poz, Marco Antonio Simon, Cobo, Jose Edindedo, Van Noije, Wilhelmus Adrianus Maria, Zuffdarcelo
Knorich, “Simple Risc microprocessor Core designed dfgital set top box applications”, Proceedingstloé
International Conference on Application Specifis®yns, Architectures And Processors, 2000, p.3544

FPGA Implementation of a 64-Bit RISC Processor g&/iiIDL (Imran Mohammad)

66

a ISSN: 2089-4864

(5]
(6]
[7]
(8]
(9]
(10]
(11]

(12]
(13]

Brunelli Claudio, Cinelli Federico, Rossi Daviddurmi Jari, “A VHDL model And implementation of @arse
grain reconfigurable coprocessor for a RISC corey Ronference on Ph.D. Research in Microelectronick an
Electronics Proceedings, PRIME, 2006, p 229232.

Rainer Ohlendorf, Thomas Wild, Michael MeitimgeHolm Rauchfuss, Andreas Herkersdorf, “Simulated a
measured performance evaluation of RISC based Sofriatin network processing applications”, Jourofl
Systems Architecture 53 (2007) 703-718.

Luker, Jarrod D., Prasad, Vinod B., “RISC sysw@esign in an FPGA”, MWSCAS 2001, v2, 2001, p532536.
Jiang, Hongtu, “FPGA implementation of conteoldata path pair in custom Image Processor désl§iEE
International Symposium on Circuits and Systems &¥dings,2004, p V141V144.

Lou Dongjun, Yuan Jingkun, Li Daguang, Jac@iwis, “Datapath verification With SystemC referemsedel”,
ASICON 2005, 6th International Conference on ASIC,2@oceedings, v 2, p 906909.

K. Vlachos, T. Orphanoudakis, Y. Papaeftathid. Nikolaou, D. Pnevmatikatos, G. KonstantowdakiA. Sanchez
P., “Design and performance evaluation of a Progmabie Packet Processing Engine (PPE) suitableifgr h
speed network Processors units”, Microprocessatdvéiorosystems 31, 2007, p 188-199.

John L. Hennessy, and David A. Pattersonm@oter Architecture A Quantitative Approach”, 4tiion; 2006.
Vincent P. Heuring, and Harry F. Jordan, “Categp Systems Design and Architecture”, 2nd EditR003.

Wayne Wolf, FPGA Based System Design, Prentall, 2005.

IJRES Vol. 1, No. 2, July 2012 : 59 — 66

