
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 5, No. 1, March 2016, pp. 57~68

ISSN: 2089-4864 57

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

HW SW Co-design of Adaptive Task Scheduler for Real Time

Systems

Dinesh G Harkut*, M. S. Ali**
*Department of Computer Science & Engineering, Prof Ram Meghe College of Engineering & Management, India

**Prof Ram Meghe College of Engineering & Management, India

Article Info ABSTRACT

Article history:

Received Nov 3, 2015

Revised Jan 18, 2016

Accepted Feb 11, 2016

 In embedded system, a real-time operating system (RTOs) is often used to

structure the application code and ensure that the deadlines are met by

reacting on events in the environment by executing the functions within

precise time. Most embedded systems are bound to real-time constraints with

determinism and latency as a critical metrics. Generally RTOs are

implemented in software, which in turns increases computational overheads,

jitter and memory footprint which can be reduced even if not remove

completely by utilizing latest FPGA technology, which enables the

implementation of a full featured and flexible hardware based RTOs.

Scheduling algorithms play an important role in the design of real-time

systems. This paper proposes the novel FIS based adaptive hardware task

scheduler for multiprocessor systems that minimizes the processor time for

scheduling activity which uses fuzzy logic to model the uncertainty at first

stage along with adaptive framework that uses feedback which allows

processors share of task running on multiprocessor to be controlled

dynamically at runtime. This Fuzzy logic based adaptive hardware scheduler

breakthroughs the limit of the number of total task and thus improves

efficiency of the entire real-time system. The increased computation

overheads resulted from proposed model can be compensated by exploiting

the parallelism of the hardware as being migrated to FPGA.

Keyword:

FPGA

Fuzzy Inference System

Hardware Scheduler

Jitter

Priority Queue

Real-time Operating System

Determinism

Reconfigurable Computing

Scheduling Algorithms

Task Scheduling

Copyright © 2016 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Dinesh G Harkut,

Department of Computer Science & Engineering,

Prof Ram Meghe College of Engineering & Management

New Express Highway, Badnera-Amravati (M.S), India

Email: dg.harkut@gmail.com

1. INTRODUCTION

Today’s consumer market is driven by technology innovations. Many technologies that were not

available a few years ago are quickly being adopted into common use. Equipment for these services requires

microprocessors inside and can be regarded as embedded system. Embedded devices are often designed to

serve their unique purpose and are included in a variety of products within different technical areas such as

industrial automation, consumer electronics, automotive industry and communications and multimedia

systems. Embedded systems find application in almost all the product ranging from train and airplanes to

microwave ovens and washing machines. As semiconductor prices drop and their performance improves,

there is a rapid increase in the complexity of embedded applications. The increased complexity of embedded

applications and the intensified market pressure to rapidly develop cheaper product have caused the industry

to streamline software development. Use of embedded operating system or Real Time Operating System

(RTOS) is one technique used to reduce development time of such system as it has effects on hardware

abstraction, multitasking, code size, learning curve and the initial investment. Unfortunately, operating

systems do introduce several forms of overheads.

 ISSN: 2089-4864

IJRES Vol. 5, No. 1, March 2016 : 57 – 68

58

FPGAs have been the reconfigurable computing mainstream in recent time. Gate-level

reconfigurability supports of FPGA results in reducing the development time to market and cost as compared

to ASIC’s which can be exploited to harness the benefit of developing the full featured and flexible hardware

based RTOs.

Real time systems are embedded systems in which the correctness of application implementations is

not only dependent upon the logical accuracy of its computations, but its ability to meet its timing constraints

as well [1]. Thus the design of the RTOses have dual goal of minimizing the overheads and maximizing the

determinism.

This paper is organized as follows. Section 2 is an overview of the Hardware/Software co-design

approaches. Section 3 describes related work of other research projects, proposed model is discussed in

section 4 and section 5 covers summary and conclusion from mainly previous work and related work.

2. HARDWARE SOFTWARE CO-DESIGN ARCHITECURE

RTOs are often used in embedded systems to structure the application code to ensure that deadlines

are met. The notions of best-effort and real-time processing have fractured into a spectrum of processing

classes with different timeliness requirements including desktop multimedia, soft real-time, firm real-time,

adaptive soft real-time and traditional hard real-time [2-4]. Many Real-Time systems are hard and missing

deadline is catastrophic where as in soft real-time system, occasional violation of deadline may not result in

useless execution of the application but decreases utilization [5].

Traditionally RTOS’s are implemented in software, but major drawbacks of standard software based

RTOS’s is that they suffer from computational overheads, indeterminism, jitter and often a large memory

footprint. RTOS computational overheads is caused mainly by tick interrupt management, which get even

worse with more task and high tick frequencies, but also task scheduling , resource allocation and de-

allocation, deadlock detection and various other OS/API functions take execution time from the task running

on the CPU.

Embedded system always consists of software and hardware components and can no longer depend

in independent hardware or software solutions to real time problem due to cost, efficiency, flexibility,

upgradability, scalability and development time.

Task implemented as software programs running on microprocessor have the properties of high

flexibility but poor performance. On the other hand, task implemented as hardware modules placed in

Hardware have the characteristics of high performance along with low flexibility and high cost. The FPGA

technology, which can be programmed virtually an n number of times (depends upon the technology), which

paved the way for enhanced flexibility and made it possible to implement established software algorithms in

hardware i.e. real-time kernel activity like scheduling, inter-process communications, interrupt management,

resource management, synchronization and time management controls. Algorithm implemented in hardware

has unique characteristics of high level parallelism and improved determinism that consequently decreases

system overhead, improve predictability and increases response time.

As a tradeoffs, reconfigurable and hardware/software co-design approaches that offer real time

capabilities while maintaining flexibility to support increasing complex systems become more feasible

solution to allow software tasks running on a microprocessor along with hardware task running in an FPGA

device.This hardware/software co-design approach reach a level of maturity that are allowing system

designers to perform operating systems core and housekeeping functionality such as time management and

task scheduling in hardware harness the advantages of higher level program development while achieving the

performance potential offered by executions of these functions in parallel hardware circuits.

3. RELATED WORK

The main source of indeterminism in real time systems are varying instruction cycle time caused by

pipeline, caches, varying execution time of RTOs kernel functions, external asynchronous interrupts etc. By

migrating real time kernel from software to hardware it is possible to remove jitter, lessen CPU overhead and

improve the indeterminism due to cache and pipeline problems. Various models and systems have been

proposed [6] to overcome this problem and some of them were discussed in remaining section.

Lennart Lindh et al. [7] proposed a system FASTCHART, an RISC based uniprocessor system

which puts ID of tasks into various queues. It consists of hardware based RT kernel capable of handling 64

tasks with 8 different priorities.

POLIS - proposed by F. Balarin, G. Berry, F. Boussinot et al. [8], is an HW SW Co-Design Finite

State Machine (CSFM) synthesis model, which supports globally asynchronous and locally synchronous

IJRES ISSN: 2088-8708

HW SW Co-design of Adaptive Task Scheduler for Real Time Systems (Dinesh G Harkut)

59

computation. Implementation is splits between Software and ASICs and Co-simulation is provided using

Ptolemy environment [9]. Complexity of processors makes static estimation is difficult and does no support

for large design as it generates customized C-code for selected processors only.

Lennart Lindh et al. [10] also proposed FASTHARD which supports features like rendezvous,

external interrupts, periodic start and termination of task without CPU interference. However system is

limited in supports for customization and scalability. It is extension to earlier work FASTCHART, based on

general purpose processors. Paper does not provided any benchmarks or test results.

The COSYMA system proposed by [11] uses simulated annealing for partitioning which can be fine

or coarse grained, to speedup software executions to meet timing constraints. It does not support burst-mode

communication. List and path based techniques are used to estimate execution time of hardware.

J. Adomat et al. [12] come up with RTU (Real Time Unit), a multi-processor system which uses

single interrupt input of each CPU to control and context switching. Lindh et al. [13] also proposes extensible

multiprocessor system - SARA, which can be used together with RTU to remove the all scheduling and tick

processing overheads.

STRON system, based on µTRON project proposed by T. Nakano et al. [14] come up with

hardware kernel which implements system calls and functionality results in increasing speedup and reducing

jitter. This hardware kernel is supported by small micro kernel has been implemented to take care of the

features not implemented in hardware. This system has tick frequency limitations and does not have

hardware support to prevent unbounded priority inversion.

In order to minimize hardware cost while maintaining timing constraints, R. Gupta et al. developed

VULCAN [15] Hardware/Software partitioning tool, which uses heuristic graph partitioning algorithm that

runs in polynomial time. The original description was in Hardware-C [16], which is mapped to fine grained

Control-Data Flow Graph.

Hardware software co-design framework for embedded system- CHINOOK, proposed by P. Chou

et al. [17, 18] is an automated interface synthesis which supports mapping of an embedded system model to

one or more processor and peripherals. Though more emphasis is put on distributed architecture which

ensuring timing constraints but system is inflexible and more complex.

A heterogeneous hardware/software DSP system CoWare in [19] proposed by H. De. Man et al., is

basis of commercial CoWare N2C [20]. This system supports the re-use and encapsulation of hardware and

software by a clear separation between functional and communication behavior of a system components.

Though this system allows co-specification using VHDL, DFL, Sliage & C languages, but imposes increased

demands on generation of exhaustive library elements.

Bjorn B. Brandenburg et al. [21] discuss a soft real-time extension of the Linux kernel, the

LITMUS
RT

 project with focus on multiprocessor real-time scheduling and synchronization. It supports the

sporadic task model with both partitioned and global scheduling [22]. The primary goal is to provide a useful

experimental platform for applied real-time systems research but LITMUS
RT

 failed to establish as stable

interfaces.

F-Timer framework suggested by A. Parisoto et al. [23] is FPGA based task scheduler capable of

managing 32 tasks with 64 different priorities which is targeted at general purpose processor. System does

not have any hardware support for task synchronization and resource handling. Paper does not discussed

about scheduling algorithm employed.

Spring kernel is basically designed for large and complex multiprocessor based RTOS proposed by

J. Stankovic et al. [24, 25] takes a radically different approach to task scheduling which is based on dynamic

and speculative planning implemented through heuristic algorithm and tree search. Fine granularity of task

deadlines is possible at the cost of large amount of pre-calculation overheads which affects the performance.

Hardware scheduling accelerator which can be configured for several different algorithms is

proposed by J. Hildebrandt et al in [26, 27]. This hardware implementation of dynamic scheduling

coprocessor also supports advanced Enhanced Least Laxity First (ELLF) algorithm. This system could not

address trashing of task but increases the overall determinism at the cost of higher complex logic.

δ-Framework- a hardware/software co-design RTOs framework proposed by V. Mooney et al. in

[28], supports 30 different processors. The system is cost effective as far as overall speedup and hardware

area (number of gates) is concerned. This framework generates all HDL code which can be implemented in

FPGA. More work on SOC was conducted [29] to integrate priority inheritance and deadlock avoidance

mechanism.

Configurable hardware scheduler with improved response time, interrupt latencies, CPU utilization

has been design and developed by V. Mooney et al. [30], which also supports high tick frequency. This

model supports three different algorithms which can be change at run time dynamically and interrupt

controller in scheduler supports 8 external interrupts each can be configured for dispatching a specific task.

 ISSN: 2089-4864

IJRES Vol. 5, No. 1, March 2016 : 57 – 68

60

Issues of extension to OS and flexibility arises out of moving entire OS to hardware can be

overcome in model propose by Z. M. Wirthlin et al. in [31]. The nano-processor provides upgradability,

flexibility and also enhancing the execution time by moving selected inefficient OS services in hardware to

save on power consumption to a great extent as shown in [32].

Paul Kohot et al. in [33], developed Real-Time Manager (RTM) which leverages the potential of

hardware parallelism, In this system, routine housekeeping tasks are implemented in hardware and thus free

the processor for critical functions which boosts the overall performance. RTM supports static priority

scheduling and handles task, time and event management. The author claims RTM decreases RTOS

overheads by 90% decreases response latency by 81%.

Problem arises out of low tick granularity can which cause jitter and result in deadline misses is

overcome by M.Vetromille et al. [34] in their proposed system HaRTS. The HaRTS supports high tick

frequency and thus reduce jitter without lower CPU available time for task to process. Though it is more

complex to implements but it requires less chip area and uses less power than additional processor.

The Hardware RTOS implemented for accelerating eCos, HW-eCos is interfaced to an ARM

processor requires fewer gates to implement and provides better speedup. Communication speed between

RTOS and hardware overshadowed the speed gain by hardware scheduler is overcome by S. Chandra et al. in

[35] by intelligent design. Paper does not discuss the number of tasks and resources supported by this system.

SRTOS proposed by Z. Murtaza, S. Khan et al. [36] aims at real-time DSP application which is

targeted on AVZ21 DSP processor. Though this paper doesn’t provide any experimental test result but

system supports additional instruction for fast resource allocation and context switching.

M. Song et al. [37] come up with H-Kernel, an outcome of through use of FPGA and thoughtful

HW/SW co-design for specific application. Though system become more complex and bulky as number of

task increases but increase in performance in the tune of 50-60%, is achievable with the system with small

numbers of task.

Sebastien Pillement et al. [38] proposed DART – an FPGA based reconfigurable architecture which

deals concurrently with high-performance, flexibility and low-energy constraints. Flexibility of FPGAs is

achieved at a very high silicon cost interconnecting huge amount of processing primitives. These

interconnection and configuration overheads result in energy waste. DART was designed as a platform-based

architecture which define cluster level interface to implement user dedicated logic which allows for the

integration of application-specific operators which efficiently support bit-level parallelism. The main concern

of this class of architectures is high reconfiguration overhead.

ARPA-MT multi-threading processor with five stage pipeline system is proposed by A. S. R.

Oliveira et al. [39]. This system supports heterogeneous task and context switches without hampering the

processor performance.

Latency introduced due to PLB bus interface in the system can be removed by better and more

direct connections between CPU and coprocessor as proposed by Luis Almeida et al. in [40, 41] OReK_CoP

i.e. Hardware implementation of OReK Real-Time Kernel. All kernel functions execute in absolute time and

almost in parallel, without interfering CPU which improves determinism and improve resource utilization.

Xaingrong Zhou, Peter Petrov et al. [42] presented model by converging compiler, micro-

architecture and OS kernel to reduce the context switching cost and improve overall responsiveness which

the main source of performance degradation in most of the HW SW based solutions. In this proposed model

context switching may be deferred until next switch point to limit the number of context registers required to

hold state. Though this arrangement results in more deadline miss which can be avoided by more complex

and good RTOS kernel design.

ARTESSO architecture as proposed by N. Maruyama et al. in [43], ported RTOS, checksum

calculation, memory copying and TCP header rearrangement to hardware. It uses novel virtual queue instead

of FIFO based queues used in RTU and STRON, which are logic expensive. The author claims that this

system is 6-9 times faster than STRON and 7 times more energy efficient than its software counterpart.

Numbers of research projects have approached the task of designing OS for FPGA based

reconfigurable computers (RC). By providing native kernel support for FPGA hardware Hayden Kwok-Hay

et al. [44-46] proposed BORPH, an operating system designed for FPGA-based RC. BORPH offers a

homogeneous UNIX interface for both software and hardware processes. Hardware processes inherit the

same level of service from the kernel.

Static scheduling of DAGs (Direct Acyclic Graph) on multi-reconfigurable-unit system under strict

real-time constraints and from a parallel processing perspective is proposed by Ikbel Belaid et al. [47].

Clustering the task, mapping the task in these clusters and placing these clusters on reconfigurable devices,

dynamic partial reconfiguration and efficient placement are achieved. However, this approach face difficulty

IJRES ISSN: 2088-8708

HW SW Co-design of Adaptive Task Scheduler for Real Time Systems (Dinesh G Harkut)

61

in dealing with nondeterministic systems with run-time characteristics that are not well known before the

DAG running and this approach will work only for small DAGs.

HartOS- Hardware implemented Real-Time Operating System is proposed by Lange A.B. et al. [48,

49] is designed to be very flexible and support most of the features normally found in a standard software

RTOS directly in hardware without sacrificing flexibility. The HartOS’s ability to run kernel at a higher

clock frequency than the microprocessor, enables more tasks to be processed serially at the same tick

frequency and thus speed up the part of the API functions executed in the kernel. Comparative study of

various methodologies/models reviewed in the literature is given in the Table 1[50].

Table 1. Comparative study of various methodologies/models

Methodology/ Model Architecture Used & Claims by Authors

FASTCHART (1991)

Hybrid [7]

RISC based processor with Load Store architecture. Migrated full kernel to Hardware to improve

determinism and remove jitter.

POLIS (1991)
Hybrid [8]

Co-design Finite State Machine (CFSM) design. Flexibility to evaluate HW/SW partitioning,
architecture & scheduler through mixed implementation of SW & ASICs.

FASTHARD (1992)

 Hybrid [10]

Memory mapped design (address/data bus). HW based RT Kernel to support external interrupts &

rendezvous.
RTU (1994)

H/W based [12]

Memory mapped design (VME bus). Supports multiple task, binary semaphores, event flags, watchdogs

with minimum overheads and improved predictability.

Silicon TRON (1995)
Hybrid [14]

Memory mapped design (address/data bus). Improve determinism and supports task mgt., flags,
semaphores, timers & external interrupt.

VULCAN (1995)

 Hybrid [15]

CDFG based fine grained mapping design. Hardware/software partitioning results in reducing the

overall cost.
CHINOOK (1996)

Hybrid [17]

Distributed Architecture. Supports mapping of processor & peripherals with strict timing constraints

with automated interface synthesis.

COWARE (1996)
Hybrid [19]

Memory mapped design (address/data bus). Supports re-use, encapsulation of HW & SW by separation
of functional behavior to supports heterogeneous HW/SW DSP systems.

COSYMA (1997)

Hybrid [11]

Memory mapped design (address/data bus). Uses novel list & path-based scheduling to estimate HW

execution time & speedup SW executions to meet timing constraints.

F-Timer (1997)

Hybrid [23]

Memory mapped design (address/data bus). Supports external interrupts by reducing overall RTOs

overheads with improved determinism.

Spring Coproc (1999)
Hybrid [25]

Memory mapped design (address/data bus). Supports fine granularity of task deadlines &
multiprocessors with guaranteed scheduling without blocking resources.

ELLF Sched. Coproc. (2000)

Hybrid [26]

Memory mapped design (address/data bus). Supports ELLF algorithm with dynamic priority calculation

by exploring parallelism in HW.
The δ-Framework (2002)

Hybrid [28]

Memory mapped design (address/data bus). Uses less nos. of gates for equivalent HW area targeted for

HW/SW co-design.
Mooney (2003)

Hybrid [29]

Memory mapped and instruction set acceleration based design. Configurable scheduler which supports

Priority based, Rate monotonic & EDF algorithms & high tick rate.

Nano-processor (2003)
Hybrid [31]

Memory mapped design (address/data bus). Provides flexibility of choosing services to perform in HW
with faster execution with compatibility with range of hardware.

RT Task Manager (2003)

Hybrid [33]

Memory mapped design (address/data bus). Supports static priority & handles task, time & event mgt.

with same tree by migrating routine task to HW.
HaRTS (2006)

Hybrid [34]

OPB Bus Scheme based design. Requires less power, less chip area and supports high tick frequency

and granularity with lowering jitters.

LITMUSRT (2006)

S/W based [21]

Push/Pull approach. Effective testbed to evaluate diff RT Scheduler & also supports G-EDF based

scheduling with private queue for each processor.

HW- eCos (2006)

Hybrid [35]

Memory mapped design (address/data bus). Removes context switching overheads through interrupt

line to CPU, reduce code size and thus improve performance.
Silicon RTOS (2006)

Hybrid [36]

Memory mapped design (address/data bus). Supports external interrupt management & uses priority

based scheduling to make RT DSP applications efficient.

H-Kernel (2007)
Hybrid [37]

Memory mapped design (address/data bus). Supports priority based task, interrupt, event & time mgt
through H-kernel and performance through thoughtful HW/SW co-design.

OReK_CoP (2009)

Hybrid [41]

PLB bus interface with stack based priority ceiling design. Ported OReK kernel to HW to improve

performance & supports asynchronous interrupt handling which improve determinism
Xiangrong et al (2010)

S/W based [42]

Micro-architecture & OS kernel. Uses micro-architecture to lower context switching and improve

responsiveness.

ARTESSO (2010)
Hybrid [43]

TCP/IP protocol. Improve throughput by moving TCP Header calculations to HW & supports priority
based FCFS scheduler by using novel virtual queue structure.

BORPH (2011)

S/W based [45]

OS uses Virtual file system. Reduces context switching drastically by exploiting the benefits of

parallelism and FPGA reconfigurability.
ARPA-MT (2011)

Hybrid [38]

Stack based priority ceiling design. Specialized, Predictable and customized Processor design which

supports heterogeneous task & schedules using RM or EDF protocol.

HartOS (2012)
 Hybrid [48]

FSL-AXI stream interface. Interrupt handled as task & mutex are protected by stack based priority
ceiling which reduces jitters and memory footprints.

Scheduling algorithm plays as important role in the design of real-time systems which involves

allocation of resources and time to jobs in such way that certain performance requirements are met. Most of

 ISSN: 2089-4864

IJRES Vol. 5, No. 1, March 2016 : 57 – 68

62

the model discussed and reviewed are mainly focused on to improve the performance by migrating some of

the house keeping routine jobs from software to hardware with a aim to leverage the potential of parallel

processing of hardware which can further be improved to a greater extent if more realistic scheduling

algorithm is devise and migrate it on hardware to assist processor and RTOs so as to increase the overall

performance without increasing memory footprint and power consumptions.

4. HARDWARE SOFTWARE CO-DESIGN TASK SCHDULER

Mostly researchers dealing with real-time system scheduling, assumes scheduling constraints to be

precise. But in practical reality, the values of these parameters are vague in most of the cases. To overcome

these limitation of vagueness of jobs scheduling parameters [51], Fuzzy logic play important role in

generating most optimal scheduling which enhance the utilization of the resources and thus increases the

overall schedulability of the system by treating these vague scheduling parameters are treated as fuzzy

variables. In this research paper, a two phase adaptive scheduling algorithm is developed and migrated on

FPGA to harness the potential of parallel processing which will compensate added computational cost for

executing of complex fuzzy algorithms.

4.1 Architecture

We proposed Fuzzy Inference System (FIS) based adaptive hardware task scheduler framework

which is discussed in subsequent paragraph basically consists of:

1. Global Fuzzy scheduler – Long term scheduler. (FIS 1)

2. Local Adaptive scheduler – Short term scheduler. (FIS II)

Both of these scheduler work in cascade and are migrated on hardware which will work in

synchronous with processor and RTOs to fulfill the overall systems objectives as illustrated in figure 1.

Figure 1. Proposed FIS based Adaptive Hardware Task Scheduler

To build a fuzzy system, inputs and output(s) to it must be first selected and partitioned into

appropriate conceptual categories which actually represent a fuzzy set on a given input or output domain.

Parameters which affects the schedulers performance are selected as input to the Fuzzy Inference System

(FIS) [52, 53], which consist of five stages:

1. Fuzzifying inputs

2. Applying fuzzy operators

3. Applying implication methods

4. Aggregating outputs

5. De-fuzzifying outputs

IJRES ISSN: 2088-8708

HW SW Co-design of Adaptive Task Scheduler for Real Time Systems (Dinesh G Harkut)

63

Here Madani’s Fuzzy inference method of TSK or simply Sugeno method of fuzzy inference may

be used [54-57]. Block diagrams of FIS I and FIS II along with the parameters selected as Input and Output

are along with surface viewer are shown in figure 2. Input to FIS I are - Job Exterior Priority (JEP), Job

Processing Priority (JPT) & Job Waiting Time (JWT) which generates Job Processing Priority (JPP). Input to

FIS II are – Job Processing Priority (JPP) generated by FIS I and Job Worst Case Execution Time (JWCET)

which generates Job Final Priority (JFP)

Output of the FIS I is single value which is treated as Job Processing Priority (JPP) and maintained

in global queue in sorted order. This newly calculated JPP along with task’s worst-case execution time

(WCET), feed to FIS II, a second stage scheduler. The working of proposed novel Two phase Fuzzy

Inference System based hardware task scheduler which uses fuzzy logic to model is depicted as –

An arrival of new task in system initiates the application. These new task are stored in Arrival

Queue in First-in-First-out manner (FIFO) waiting to be get processed by the Fuzzy Inference System (Phase

I). Task entering the systems are tagged with some basic parameters which play important role in scheduling

these task. These jobs are stored in sorted order as per newly calculate Job Processing Priority (JPP). Task

queued in Global queue are feed to Fuzzy Inference System (Phase II). Local Queue holds the task in sorted

order as per the Job Final Priority (JFP) calculated by FIS 2. Master controller keeps track of actual execution

time (AET) of each task being processed and if the difference between Worst Case Execution Time (WCET)

and AET for a task in beyond certain threshold value i.e. δ (t), then is it notified back to FIS II which will

update the value of WECT by AET and consider this new updated value of WCET during next scheduling

cycle. Task blocks on shared resources are stored in Block Queue where semaphore is used to resolve the

deadlock and task are moved from block queue to Waiting Queue if the task is yet to be complete. These

tasks are then added back to Arrival Queue along with newly entered task in FIFO order.

Figure 2. Fuzzy Inference System I & II block diagram

4.1.1 Adaptive Fuzzy Scheduling

Under traditional task model like periodic, sporadic etc., the schedulability of system is based on

each task’s worst-case execution time (WCET), which defined the maximum amount of time each of its jobs

can execute. The disadvantage of using WCETs is that system may be deemed un-schedulable even if they

would function correctly most of the time when deployed. This drawback can be overcome by making our

scheduler adaptive to the runtime varying conditions, to allocate per-task processors time share, instead of

always using constant share allocation based on constant WCET and readjusting the priority of task. When

there is variation in the WCET and the actual execution time of a particular job beyond some predetermined

threshold value, adaptive task schedulers is invoked with actual execution time and reschedule the task and

refresh and reorder the tasks in local queue accordingly. This results into adjusting the per task processor

Job Processing

Priority (JPP)

Job Exterior

Priority (JEP)

Job Processing

Time (JPT)

Job Waiting

Time (JWT)

Mamdani’s Fuzzy Inference

System (FIS#1)

Job Final

Priority (JFP)

Job Processing

Priority (JPP)

Job Worst Case

Execution Time

(JWCET)

Mamdani’s Fuzzy Inference

System (FIS#2)

 ISSN: 2089-4864

IJRES Vol. 5, No. 1, March 2016 : 57 – 68

64

time share based on the runtime conditions which will effectively increases the overall schedulability and

processor utilization. Overall quality-of-service (QoS) can be improved by ignoring the transient overload

conditions. Dispatcher will dispatch the task from local queue to processors bank to get serve.

Further resource synchronization is used to optimize scheduling of the tasks blocked on shared

resource which are parked on blocked or waiting queue. Task blocks on shared resources are stored in Block

Queue are moved from block queue to Waiting Queue if the task is yet to be complete. These tasks are then

added back to Arrival Queue along with newly entered task in FIFO order. Resource synchronization module

which implements priority queue with aging to avoid the task starvation and thus improve chance of fair

treatments to all the tasks in the queue is used to remove the deadlocks on resources among task from block

task queue which will increase the overall performance of the RTOs. Processors share allocations are

adjusted using feedback and resource synchronization techniques [58].

Fine grained time management and frequent sorting and re-arrangements of tasks in Local Queue

and Waiting Queue increases the CPU overhead and thus affects the processor utilization which can be

overcome by implementing these queues as hardware priority queue as shown in figure 3.

Figure 3. Hardware Priority Queue architecture

4.1.2 Queue Loading Process

Queue loading is accomplished by inserting the newly arrived task at the bottom of binary heap.

Process of repeatedly comparing and swapping with adjacent parent node is performed until the priority of

newly arrived task is less than its parents. Shift register mechanism shown in figure 4 inserts the newly

arrived task in constant time. The heap property ensures that elements are sorted in order.

4.1.3 Queue Un-loading Process

Remove the root task from the queue and reconstruction of the heap constituted the queue un-

loading operation. Root element is removed by replacing it with the last element in the queue to keep the

heap balanced. Process of repeatedly comparing and swapping with smallest of the child node is perform

until the priority root node is less than its child. Highest priority value is obtained in constant time and as

priority queue is managed in hardware, the processor is not required to wait for the operation to complete.

4.1.4 Resource Synchronization Process

Task which are blocked on shared recourses are park on blocked queue which is implemented as

hardware priority queue. To avoid the task starvation and fair share of CPU time, Priority queue with aging

technique is used. Task upload priority is calculated, which will used to decide which task next to be moved

from blocked queue to waiting queue.

It is observe that, generally to ensure tasks must meet its deadline, the scheduler’s WCET are often

overestimated. This causes system to be under-utilise and wastes CPU resources. Here we have examined

how the scheduler overheads and its variation can be reduced by migrating the scheduling functionality to

hardware logic. Further by accommodating the varying WCET on runtime, in scheduling, there is a twofold

M
u

x
/

D
em

u
x

Q

u
eu

e
U

n
lo

ad
in

g

A
d

d
re

ss
 A

rb
it

ra
to

r

Block RAM

Priority Queue Controller

Level 0

Level 1

Level 2

Level 3

IJRES ISSN: 2088-8708

HW SW Co-design of Adaptive Task Scheduler for Real Time Systems (Dinesh G Harkut)

65

increase in the idle time of CPU which can be utilised effectively and thus results in increase in overall

performance, enhance system predictability and timing resolution. An analytical result comparison of three

different cases namely:

1. RTOS with Software Scheduler

2. RTOS with Hardware Scheduler &

3. RTOS with Adaptive Hardware Scheduler is depicted in figure 4

5. CONCLUSION

The conclusion from a comprehensive literature review of the publication throughout the last three

decades, is that the major drawback from software based RTO’s can be removed by implementing the entire/

partial kernel of a real-time operating system in hardware. All past attempts to design a hardware RTOS

kernel has had limitations either in form of lacking key RTOS features/resources, being inflexible in terms of

configurability or perhaps suffering from poor performance. By addressing the set of desired features,

performance goals, clever design and utilization of the latest FPGA technologies, the implementation of a full

featured and flexible hardware based RTOs is be possible which could address the shortcomings found in the

literature A hardware Intellectual Property (IP) can be used for implementing routine frequently used

housekeeping activities like scheduling, inter-process communication and time management control from the

software OS-kernel to hardware unit. This result in significantly reducing the overhead by migrating kernel

services to hardware which will improve the response time by increasing the CPU utilization. A hardware

kernel executes in parallel to the CPU, minimizes the processor time for scheduling activity and thus relieves

pressure from the CPU which gets almost full execution time for the application tasks. There is less software

code in memory since the functionality is implemented in hardware instead [23].

Figure 4. Scheduler Execution Time Variations

A software OS will generate a clock tick interrupt to the CPU when either it is executed or the lists

of tasks (queues) are worked at or new periodic delay times are calculated for the tasks. With the hardware

kernel in the system, it checks all queues concurrently and only generates an interrupt to the CPU when there

is to be a task switch [59, 60]. Another advantage of having the kernel in hardware is the possibility to use

complex scheduling algorithms, unlimited of different queue types without any performance loss.

When real-time kernels are implemented in software, one of the disadvantages is that the execution

time for the service calls will have a minimum and a maximum time [61]. The time gap can be big and the

worst-case time is one of the factors that will decide the utilization factor of the system. The scheduling time

 Case 1

Time required to execute special instruction

Case 2 Local Q

Case 3

 Task Actual
Execution

Task Worst Case
Execution

Idle time
of CPU

Task Release
Time

 Scheduler
Execution

Case 1: RTOS with Software Scheduler, Case 2: RTOS with Hardware Scheduler
Case 3: RTOS with Adaptive Hardware Scheduler

 ISSN: 2089-4864

IJRES Vol. 5, No. 1, March 2016 : 57 – 68

66

varies with the number of tasks and scheduling algorithm and must be bounded by a pessimistic worst case

execution time, which decrease the determinism.

We have proposed two phase FIS based hardware task scheduler which uses fuzzy logic to model

the uncertainty at first stage along with adaptive framework that uses feedback in second stage. Scheduling

based on static WCET will results in lower utilization of processors, which can be overcome by adaptive

feedback mechanism which will update the WCET parameter of the task with AET, if the difference between

the WCET & AET is exceeding the pre define threshold value τ, which allows processors share of task

running on multiprocessor to be controlled dynamically at runtime and thus increases the overall processor

utilization and thus the schedulability. Further, Starvation of low priority task problem is overcome by

Resource synchronization module which in turns avoids the aging of task. Because of high granularity,

frequent sorting and updation of the tasks in queue increases the overhead which can be reduced to greater

extent by using Hardware Priority Queue to store the task which increase the sorting speed and thus lessen

the burden of CPU. This increases the overall utilization of CPU and increases the schedulability of the tasks.

Our future work is to map this proposed model on MicroBlaze soft processor core as MicroBlaze

FPGA designs are readily available and can be implemented with little effort. The FreeRTOS port in

MicroBlaze is being targeted to be modified and run tasks concurrently on multiple processors as FreeRTOS

provides simple, easy to use and highly portable kernel. The aim to produce a version of FreeRTOS that

supports multi-core hardware and efficient hardware based task scheduler

REFERENCES
[1] D. Stewart, “Introduction to Real Time”, Embedded systems programming, CMP Media, November 2001.

[2] Z. Deng, J.W. Liu and S. Sun, “Dynamic scheduling of hard real-time application in open system environment”,

Tech. Rep., University of Illinois at Urbana-Champaign 1996.

[3] G. Buttazzo and J. A. Stankovie, “RED: robust earliest deadline scheduling”, in Proceeding of 3rd International

Workshop Responsive Computing Systems, Lincoln, NH, pp. 100-111, 1993.

[4] S. M. Petters, “Bounding the execution time of real-time task on modern processors”, in Proceeding of 7th

International Conference Real-Time Computing Systems and Applications, Cheju Island, pp. 498-502, 2000.

[5] J. Zhu, T.G. Lewis, W. Jackson and R.L. Wilson, “Scheduling in hard real-time applications”, IEEE software,

Volume 12, pp. 54-63, 1995.

[6] D. G. Harkut & M.S.Ali, “Hardware Support for Real Time Operating System: A Review”, in Proceedings of IEEE

International Conference on Engineering and Technology (ICETECH’15), 2015.

[7] L. Lindh, F. Stanischewski, “FASTCHART - Performance, Benefits and Disadvantages of the Architecture”, in

Proceeding of 5th Euromicro Workshop on Real-Time Systems, 1993.

[8] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C. Passerone, K. Suzuki and B. Tabbara.

“Hardware-Software Co-Design of Embedded Systems: The POLIS Approach”, Kluwer Academic Publishers,

1997.

[9] J.T. Buck, S. Ha, E.A. Lee and D.G. Messerschmitt, “Ptolemy: A Framework for Simulating and Prototyping

Heterogeneous Systems”, International Journal of Computer Simulation, special issue on “Simulation Software

Development”, pp.155-182, April 1994.

[10] L. Lindh, “FASTHARD - a fast time deterministic hardware based real-time kernel”, in Proceedings of Real-Time

Systems, 4th Euromicro workshop, pp. 21-25, June 1992.

[11] R Ernst, J. Henkel, Th. Benner, W. Ye, U. Holtmann, D Herrman and M. Trawny, “The COSYMA environment for

hardware software co-synthesis of small embedded systems”, IEEE Micro, pp.159-166, 1996.

[12] J. Adomat, J. Furunas, L. Lindh, and J. Starner, “Real-time kernel in hardware RTU: a step towards deterministic

and high-performance real-time systems”, in Proceedings of the 8th Euromicro Workshop on Real-Time Systems,

L'Aquila, pp. 164-168, Jun. 1996.

[13] L. Lindh, T. Klevin, L. L. T. Klevin, and J. Furunäs, “Scalable architecture for real-time applications sara”, in CAD

& CG’99, pp. 208-211, 1999.

[14] T. Nakano, A. Utama, M. Itabashi, A. Shiomi and M. Imai, “Hardware implementation of a real-time operating

system”, in proceeding of IEEE International Symposium of 12th TRON project, Tokoy, Japan, pp. 34-42, Nov.

1995.

[15] R. Gupta. “Co-Synthesis of Hardware and Software for Digital Embedded Systems”, the Springer International

Series in Engineering and Computer Science, Volume 329, 1995.

[16] D.C. Ku and G. DeMicheli, “HardwareC - a language for hardware design Ver 2.0” CSL Technical Report CSL-

TR-90-419, Stanford, April 1990.

[17] P. Chou, R. Ortega and G. Borriello, “The Chinook Hardware Software Co-Synthesis System”, in Proceedings of

the International Symphosium on System Synthesis, pp. 22-27, Sept. 1995.

[18] P. Chou, E. Walkup and G. Borriello. “Scheduling for Reactive Real-Time Systems”. IEEE Micro archive Journal,

IEEE Computer Society Press Los Alamitos, CA, USA. Volume 14, Issue 4, pp. 37-47, August 1994.

[19] H. De Man, D. Verkest, K. Van Rompary and I. Bolsens, “Coware - A Design Environment for Heterogeneous

Hardware Software Systems”, Design Automation of Embedded Systems, pp.357-386, Oct. 1996.

[20] S. Michael, “CoWare revs tool for SoC platform design”, Electronic Engineering Times, pp. 54-58, August 2000.

IJRES ISSN: 2088-8708

HW SW Co-design of Adaptive Task Scheduler for Real Time Systems (Dinesh G Harkut)

67

[21] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev and J. Anderson, "LITMUSRT: A Status Report", in

Proceedings of the 9th Real-Time Linux Workshop, pp. 107-123, November 2007.

[22] B. Brandenburg , R. Spliet, M. Vanga and S. Dziadek, "Fast on Average, Predictable in the Worst Case: Exploring

Real-Time Futexes in LITMUSRT", in Proceedings of the 35th IEEE Real-Time Systems Symposium, Rome, Italy,

pp. 96-105, Dec.2014.

[23] Parisoto, J. Souza, A., L. Carro, M. Pontremoli, C. Pereira, and A. Suzim, “F-timer: Dedicated FPGS to real-time

systems design support”, in proceeding of 9th Euromicro Workshop on RTS, Toledo, Spain, pp. 35-40, Jun.1997.

[24] J. Stankovic and K. Ramamritham, “The spring kernel: a new paradigm for real-time systems”, Software, IEEE,

Volume 8, Issue 3, pp. 62-72, May 1991.

[25] J. Stankovic, W. Burleson, J. Ko, D. Niehaus, K. Ramamritham, G. Wallace and C. Weems, “The spring scheduling

coprocessor: a scheduling accelerator”, in IEEE Transactions on Very Large Scale Integration Systems, Volume 7,

pp. 38-47, Mar. 1999.

[26] J. Hildebrandt, F. Golatowski, and D. Timmermann, “Scheduling coprocessor for enhanced least-laxity-first

scheduling in hard real-time systems”, in Proceedings of the 11th Euromicro Conference on Real-Time Systems,

pp. 208-215, 1999.

[27] J. Hildebrandt and D. Timmermann, “An FPGA based scheduling coprocessor for dynamic priority scheduling in

hard Real-Time systems”, in Proceeding of 10th International Conference On Field Programmable Logic &

Applications, Villach, Austria, pp. 777-780, 2000.

[28] V. Mooney, J. Lee, and K. Ryu, “A Framework for Automatic Generation of Configuration Files for a Custom

Hardware/Software RTOS”, in Proceedings of the International Conference on Engineering of Reconfigurable

Systems and Algorithms (ERSA'02), pp. 31-37, June 2002.

[29] V. Mooney and J. Lee, “Hardware/Software Partitioning of Operating Systems: Focus on Deadlock Detection and

Avoidance”, in IEEE Proceeding, Computer and Digital Techniques, UK, pp. 167-182, July 2005.

[30] V. Mooney III, P. Kuacharoen and M. A. Shalan, “A configurable hardware scheduler for real-time systems”, in

Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms, CSREA

Press , pp. 96-101, 2003.

[31] M. Wirthlin, B. Hutchings, and K. Gilson, “The Nano Processor: a Low Resource Reconfigurable Processor”, in

IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, pp.23-30, April 2003.

[32] R. Dick, G. Lakshminarayana, A. Raghunathan, and N. Jha, “Power Analysis of Embedded Operating Systems”, in

proceedings of the 37th Design Automation Conference, Los Angeles, CA, pp. 312-315, June 2000.

[33] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support for real-time operating systems”, in Proceeding of First

IEEE/ACM/IFIP International Conference on Hardware/Software Co-design and System Synthesis (CODES+ISSS

2003), Newport Beach CA, pp. 45-51, Oct. 2003.

[34] M. Vetromille, L. Ost, C. Marcon, C. Reif, and F. Hessel, “RTOS scheduler implementation in hardware and

software for real time applications”, in 17th IEEE International Workshop on Rapid System Prototyping, pp. 163-

168, Jun. 2006.

[35] S. Chandra, F. Regazzoni, and M. Lajolo, “Hardware/software partitioning of operating systems: a behavioral

synthesis approach”, in GLSVLSI ’06 Proceedings of the 16th ACM Great Lakes symposium on VLSI, (NY, USA),

pp. 324-329, ACM, 2006.

[36] Z. Murtaza, S. Khan, A. Rafique, K. Bajwa, and U. Zaman, “Silicon real time operating system for embedded

DSPs”, in ICET’ 06: Proceedings of International Conference on Emerging Technologies, (Peshwar), IEEE, pp.

188-191, Nov. 2006.

[37] M. Song, S. H. Hong, and Y. Chung, “Reducing the overhead of real-time operating system through reconfigurable

hardware”, in proceedings of 10th Euromicro Conference on Digital System Design Architectures, Methods and

Tools, pp. 311-316, Aug. 2007.

[38] Sebastien Pillement, Olivier Sentieys and Raphael David “DART: A Functional-Level Reconfigurable Architecture

for High Energy Efficiency”, EURASIP Journal on Embedded Systems, Volume 2008, Article ID 562326, Hindawi

Publishing Corporation, 2008.

[39] A. S. R. Oliveira, L. Almeida, and A. B. Ferrari, “The ARPA-MT embedded SMT processor and its RTOS

hardware accelerator”, Industrial Electronics, IEEE Transactions on, Volume 58, No. 3, pp. 890-904, March 2011

[40] L. Almeida, A. S. R. Oliveira and A. B. Ferrari, “A specialized and predictable processor for real-time systems”, in

Workshop on Application Specific Processors, pp. 32-38, Nov. 2009.

[41] L. Almeida, N. Silva, A. Oliveira and R. Santos, "The OReK real-time micro kernel for FPGA-based systems-on-

chip", in proceedings of 6th Workshop on Embedded Systems for Real-time Multimedia, (ESTImedia 2008), IEEE

Xplore, Atlanta Georgia, pp. 75-80, Oct. 2008.

[42] Xiangrong Zhou, Peter Petrov “Rapid and low-cost context-switch through embedded processor customization for

real-time and control applications” DAC San Francisco, CA, pp. 352-357, July 2006.

[43] N. Maruyama, T. Ishihara, and H. Yasuura, “An RTOS in hardware for energy efficient software-based TCP/IP

processing”, in IEEE Symposium on Application Specific Processors, pp. 58-63, June 2010.

[44] H.K. Hay So, X. Changqing, W. Mei, W. Nan and Z. Chunyuan, “Extending BORPH for shared memory

reconfigurable computers Field Programmable Logic and Applications (FPL)” in 22nd International Conference on

IEEE Improving Usability of FPGA-Based Reconfigurable Computers Through Operating System Support, Oslo.

pp. 563-566, Aug. 2012.

[45] H.K. Hay So and R. W. Broderson, “BORPH: An Operating System for FPGA-Based Reconfigurable Computers”

DAC University of California, Berkeley, Technical Report No. UCB/EECS, pp. 92-96, July 2007.

 ISSN: 2089-4864

IJRES Vol. 5, No. 1, March 2016 : 57 – 68

68

[46] H.K. Hay So, and R.W. Brodersen, “A unified hardware/software runtime environment for FPGA-based

reconfigurable computers using BORPH”, ACM Transactions on Embedded Computing Systems (TECS) TECS

Homepage archive Volume 7, Issue 2, Article No. 14 ACM New York, USA, February 2008.

[47] Ikbel Belaid, Fabrice Muller and Maher Benjemaa “Static Scheduling of Periodic Hardware Tasks with Precedence

and Deadline Constraints on Reconfigurable Hardware Devices”, International Journal of Reconfigurable

Computing, Volume 2011, Article ID 591983, Hindawi Publishing Corporation, 2011

[48] A.B. Lange, K.H. Andersen, U.P. Schultz and A. S. Sørensen, “HartOS - A hardware implemented RTOS for hard

real-time applications”, in Proceedings of the 11th IFAC/IEEE International Conference on Programmable Devices

and Embedded Systems, Brno, Czech Republic, 2012.

[49] A.B. Lange, “Hardware RTOS for FPGA based embedded systems”, Master's thesis, University of Southern

Denmark. http://www.hartos.dk/publications/thesis/hartos.pdf accessed on Nov.2015.

[50] D.G. Harkut & M.S. Ali, “Hardware Support for Adaptive Task Scheduler in RTOS”, Intelligent Systems

Technologies & Applications, Volume 384, Springer, UK, pp. 227-245, 2015.

[51] M.M.M. Fahmy, "A fuzzy algorithm for scheduling non-periodic jobs on soft real-time single processor system",

Ain Shams Engineering Journal, Elsevier B.V., doi:10.1016/j.asej.2010.09.004, pp 31-38, 2010

[52] M. Sabeghi, M. Naghibzadeh and T. Taghavi, “Scheduling Non-Preemptive Periodic Task in Soft Real-time

Systems using fuzzy Inference”, 9th IEEE International Symposium on Object and component-oriented Real-Time

distributed Computing(ISORC), April 2006.

[53] H. Mahdi, M. F. Sied and L. Caro, "Soft real-time fuzzy task scheduling for multiprocessor systems", International

journal of intelligent technology Vol. 2 No. 4, pp. 211-216, 2007. 98 E. H. Mamdami and S. Assilian , “An

experiment in linguistic synthesis with a fuzzy logic controller”, in International Journal of Man-Machine Studies,

Vol. 7, No. 1, pp. 1-13, 1975.

[54] E. H. Mamdami and S. Assilian , “An experiment in linguistic synthesis with a fuzzy logic controller ”, in

International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13, 1975.

[55] M. Sugeno, “Industrial applications of fuzzy control”, Elsevier Science Inc., New York, NY, 1985.

[56] S. Hajar, H.N. Seyedeh and S. Shahaboddin, "Static task scheduling in cooperative distributed systems based on

soft computing techniques", Australian journal of basic and applied sciences, Vol. 4, No. 6, pp.1518-1526, 2010.

[57] D. Dubois, H. Fargier and P. Fortemps, "Fuzzy scheduling: modelling flexible constraints vs. coping with

incomplete knowledge", European Journal of Operational Research, 147(2): pp. 231–52, 2003.

[58] J.S.R. Jang, “ANFIS: Adaptive-Network-based Fuzzy Inference Systems”, IEEE Transactions on Systems, Man,

and Cybernetics, Vol. 23, No. 3, pp. 665-685,1993.

[59] L. Lindh, J. Stärner and J. Furunäs, “From Single to Multiprocessor Real-Time Kernels in Hardware”, in IEEE

Real Time Technology and Applications Symposium. Chicago, May 1995.

[60] L. Lindh, “Utilization of Hardware Parallelism in Realizing Real Time Kernels”, Doctoral Thesis, TRITA – TDE

1994:1, ISSN 0280-4506, ISRN KTH/TDE/FR-94/1-SE, Department of Electronics, Royal Institute of technology,

Stockholm, Sweden, 1994, accessed on Nov.2015.

[61] Lindh, L. “Utilization of Hardware Parallelism in Realizing Real Time Kernels”, Doctoral Thesis, TRITA – TDE

1994:1, ISSN 0280-4506, ISRN KTH/TDE/FR-94/1-SE, Department of Electronics, Royal Institute of technology,

Stockholm, Sweden, 1994, accessed on Aug.2015

BIOGRAPHIES OF AUTHORS

Dinesh G Harkut received B.E. (Computer Science & Engineering) & M.E. (Computer Science

& Engineering) from SGB Amravati University in 1991 and 1998 respectively. He completed his

masters in Business Management and obtained his Ph.D. from SGB Amravati University in

Business Management in 2013 while serving as a full-time faculty in the Dept. of Computer

Science & Engineering at Prof Ram Meghe College of Engineering & Management, Badnera –

Amravati. His research interests are Embedded Systems and RTOS.

M.S. Ali is a Professor and Principal of Prof Ram Meghe College of Engineering &

Management, Badnera – Amravati. He obtained his B.E. (Electronics & Power) and M.Tech.

(Power Electronics) from Nagpur University and I.I.T. Powai, Mumbai in 1981 & 1984

respectively He obtained his Ph.D. from SGB Amravati University in 2006. He has been on the

SGB University’s various body like Board of Studies, Faculty of Engineering & Technology and

Academic Council since last fifteen years. He is Hon’ble Chancellors nominee on the senate of

RTM Nagpur University. His research interests are Operating Systems, Artificial Intelligence

and Java Technologies.

