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 In embedded system, a real-time operating system (RTOs) is often used to 

structure the application code and ensure that the deadlines are met by 

reacting on events in the environment by executing the functions within 

precise time. Most embedded systems are bound to real-time constraints with 

determinism and latency as a critical metrics. Generally RTOs are 

implemented in software, which in turns increases computational overheads, 

jitter and memory footprint which can be reduced even if not remove 

completely by utilizing latest FPGA technology, which enables the 

implementation of a full featured and flexible hardware based RTOs. 

Scheduling algorithms play an important role in the design of real-time 

systems. This paper proposes the novel FIS based adaptive hardware task 

scheduler for multiprocessor systems that minimizes the processor time for 

scheduling activity which uses fuzzy logic to model the uncertainty at first 

stage along with adaptive framework that uses feedback which allows 

processors share of task running on multiprocessor to be controlled 

dynamically at runtime. This Fuzzy logic based adaptive hardware scheduler 

breakthroughs the limit of the number of total task and thus improves 

efficiency of the entire real-time system. The increased computation 

overheads resulted from proposed model can be compensated by exploiting 

the parallelism of the hardware as being migrated to FPGA. 
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1. INTRODUCTION 

Today’s consumer market is driven by technology innovations. Many technologies that were not 

available a few years ago are quickly being adopted into common use.  Equipment for these services requires 

microprocessors inside and can be regarded as embedded system. Embedded devices are often designed to 

serve their unique purpose and are included in a variety of products within different technical areas such as 

industrial automation, consumer electronics, automotive industry and communications and multimedia 

systems. Embedded systems find application in almost all the product ranging from train and airplanes to 

microwave ovens and washing machines. As semiconductor prices drop and their performance improves, 

there is a rapid increase in the complexity of embedded applications. The increased complexity of embedded 

applications and the intensified market pressure to rapidly develop cheaper product have caused the industry 

to streamline software development. Use of embedded operating system or Real Time Operating System 

(RTOS) is one technique used to reduce development time of such system as it has effects on hardware 

abstraction, multitasking, code size, learning curve and the initial investment. Unfortunately, operating 

systems do introduce several forms of overheads. 
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FPGAs have been the reconfigurable computing mainstream in recent time. Gate-level 

reconfigurability supports of FPGA results in reducing the development time to market and cost as compared 

to ASIC’s which can be exploited to harness the benefit of developing the full featured and flexible hardware 

based RTOs. 

Real time systems are embedded systems in which the correctness of application implementations is 

not only dependent upon the logical accuracy of its computations, but its ability to meet its timing constraints 

as well [1]. Thus the design of the RTOses have dual goal of minimizing the overheads and maximizing the 

determinism. 

This paper is organized as follows. Section 2 is an overview of the Hardware/Software co-design 

approaches. Section 3 describes related work of other research projects, proposed model is discussed in 

section 4 and section 5 covers summary and conclusion from mainly previous work and related work.  

 

 

2. HARDWARE SOFTWARE CO-DESIGN ARCHITECURE  

RTOs are often used in embedded systems to structure the application code to ensure that deadlines 

are met. The notions of best-effort and real-time processing have fractured into a spectrum of processing 

classes with different timeliness requirements including desktop multimedia, soft real-time, firm real-time, 

adaptive soft real-time and traditional hard real-time [2-4]. Many Real-Time systems are hard and missing 

deadline is catastrophic where as in soft real-time system, occasional violation of deadline may not result in 

useless execution of the application but decreases utilization [5].   

Traditionally RTOS’s are implemented in software, but major drawbacks of standard software based 

RTOS’s is that they suffer from computational overheads, indeterminism, jitter and often a large memory 

footprint. RTOS computational overheads is caused mainly by tick interrupt management, which get even 

worse with more task and high tick frequencies, but also task scheduling , resource allocation and de-

allocation, deadlock detection and various other OS/API functions take execution time from the task running 

on the CPU. 

Embedded system always consists of software and hardware components and can no longer depend 

in independent hardware or software solutions to real time problem due to cost, efficiency, flexibility, 

upgradability, scalability and development time.  

Task implemented as software programs running on microprocessor have the properties of high 

flexibility but poor performance. On the other hand, task implemented as hardware modules placed in 

Hardware have the characteristics of high performance along with low flexibility and high cost. The FPGA 

technology, which can be programmed virtually an n number of times (depends upon the technology), which 

paved the way for enhanced flexibility and made it possible to implement established software algorithms in 

hardware i.e. real-time kernel activity like scheduling, inter-process communications, interrupt management, 

resource management, synchronization and time management controls. Algorithm implemented in hardware 

has unique characteristics of high level parallelism and improved determinism that consequently decreases 

system overhead, improve predictability and increases response time. 

As a tradeoffs, reconfigurable and hardware/software co-design approaches that offer real time 

capabilities while maintaining flexibility to support increasing complex systems become more feasible 

solution to allow software tasks running on a microprocessor along with hardware task running in an FPGA 

device.This hardware/software co-design approach reach a level of maturity that are allowing system 

designers to perform operating systems core and housekeeping functionality such as time management and 

task scheduling in hardware harness the advantages of higher level program development while achieving the 

performance potential offered by executions of these functions in parallel hardware circuits. 

 

 

3. RELATED WORK 

The main source of indeterminism in real time systems are varying instruction cycle time caused by 

pipeline, caches, varying execution time of RTOs kernel functions, external asynchronous interrupts etc. By 

migrating real time kernel from software to hardware it is possible to remove jitter, lessen CPU overhead and 

improve the indeterminism due to cache and pipeline problems. Various models and systems have been 

proposed [6] to overcome this problem and some of them were discussed in remaining section. 

Lennart Lindh et al. [7] proposed a system FASTCHART, an RISC based uniprocessor system 

which puts ID of tasks into various queues. It consists of hardware based RT kernel capable of handling 64 

tasks with 8 different priorities.  

POLIS - proposed by F. Balarin, G. Berry, F. Boussinot et al. [8], is an HW SW Co-Design Finite 

State Machine (CSFM) synthesis model, which supports globally asynchronous and locally synchronous 
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computation. Implementation is splits between Software and ASICs and Co-simulation is provided using 

Ptolemy environment [9]. Complexity of processors makes static estimation is difficult and does no support 

for large design as it generates customized C-code for selected processors only. 

Lennart Lindh et al. [10] also proposed FASTHARD which supports features like rendezvous, 

external interrupts, periodic start and termination of task without CPU interference. However system is 

limited in supports for customization and scalability. It is extension to earlier work FASTCHART, based on 

general purpose processors. Paper does not provided any benchmarks or test results. 

The COSYMA system proposed by [11] uses simulated annealing for partitioning which can be fine 

or coarse grained, to speedup software executions to meet timing constraints. It does not support burst-mode 

communication. List and path based techniques are used to estimate execution time of hardware.  

J. Adomat et al. [12] come up with RTU (Real Time Unit), a multi-processor system which uses 

single interrupt input of each CPU to control and context switching. Lindh et al. [13] also proposes extensible 

multiprocessor system - SARA, which can be used together with RTU to remove the all scheduling and tick 

processing overheads. 

STRON system, based on µTRON project proposed by T. Nakano et al. [14] come up with 

hardware kernel which implements system calls and functionality results in increasing speedup and reducing 

jitter. This hardware kernel is supported by small micro kernel has been implemented to take care of the 

features not implemented in hardware. This system has tick frequency limitations and does not have 

hardware support to prevent unbounded priority inversion. 

In order to minimize hardware cost while maintaining timing constraints, R. Gupta et al. developed 

VULCAN [15] Hardware/Software partitioning tool, which uses heuristic graph partitioning algorithm that 

runs in polynomial time. The original description was in Hardware-C [16], which is mapped to fine grained 

Control-Data Flow Graph.  

Hardware software co-design framework for embedded system- CHINOOK, proposed by  P. Chou 

et al. [17, 18] is an automated interface synthesis which supports mapping of an embedded system model to 

one or more processor and peripherals. Though more emphasis is put on distributed architecture which 

ensuring timing constraints but system is inflexible and more complex. 

A heterogeneous hardware/software DSP system CoWare in [19] proposed by H. De. Man et al., is 

basis of commercial CoWare N2C [20]. This system supports the re-use and encapsulation of hardware and 

software by a clear separation between functional and communication behavior of a system components. 

Though this system allows co-specification using VHDL, DFL, Sliage & C languages, but imposes increased 

demands on generation of exhaustive library elements. 

Bjorn B. Brandenburg et al. [21] discuss a soft real-time extension of the Linux kernel, the 

LITMUS
RT

 project with focus on multiprocessor real-time scheduling and synchronization. It supports the 

sporadic task model with both partitioned and global scheduling [22]. The primary goal is to provide a useful 

experimental platform for applied real-time systems research but LITMUS
RT

 failed to establish as stable 

interfaces. 

F-Timer framework suggested by A. Parisoto et al. [23] is FPGA based task scheduler capable of 

managing 32 tasks with 64 different priorities which is targeted at general purpose processor. System does 

not have any hardware support for task synchronization and resource handling. Paper does not discussed 

about scheduling algorithm employed. 

Spring kernel is basically designed for large and complex multiprocessor based RTOS proposed by 

J. Stankovic et al. [24, 25] takes a radically different approach to task scheduling which is based on dynamic 

and speculative planning implemented through heuristic algorithm and tree search. Fine granularity of task 

deadlines is possible at the cost of large amount of pre-calculation overheads which affects the performance.  

Hardware scheduling accelerator which can be configured for several different algorithms is 

proposed by J. Hildebrandt et al in [26, 27]. This hardware implementation of dynamic scheduling 

coprocessor also supports advanced Enhanced Least Laxity First (ELLF) algorithm. This system could not 

address trashing of task but increases the overall determinism at the cost of higher complex logic. 

δ-Framework- a hardware/software co-design RTOs framework proposed by V. Mooney et al. in 

[28], supports 30 different processors. The system is cost effective as far as overall speedup and hardware 

area (number of gates) is concerned. This framework generates all HDL code which can be implemented in 

FPGA. More work on SOC was conducted [29] to integrate priority inheritance and deadlock avoidance 

mechanism. 

Configurable hardware scheduler with improved response time, interrupt latencies, CPU utilization 

has been design and developed by V. Mooney et al. [30], which also supports high tick frequency. This 

model supports three different algorithms which can be change at run time dynamically and interrupt 

controller in scheduler supports 8 external interrupts each can be configured for dispatching a specific task. 
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Issues of extension to OS and flexibility arises out of moving entire OS to hardware can be 

overcome in model propose by Z. M. Wirthlin et al. in [31]. The nano-processor provides upgradability, 

flexibility and also enhancing the execution time by moving selected inefficient OS services in hardware to 

save on power consumption to a great extent as shown in [32]. 

Paul Kohot et al. in [33], developed Real-Time Manager (RTM) which leverages the potential of 

hardware parallelism, In this system, routine housekeeping tasks are implemented in hardware and thus free 

the processor for critical functions which boosts the overall performance. RTM supports static priority 

scheduling and handles task, time and event management. The author claims RTM decreases RTOS 

overheads by 90% decreases response latency by 81%. 

Problem arises out of low tick granularity can which cause jitter and result in deadline misses is 

overcome by M.Vetromille et al. [34] in their proposed system HaRTS. The HaRTS supports high tick 

frequency and thus reduce jitter without lower CPU available time for task to process. Though it is more 

complex to implements but it requires less chip area and uses less power than additional processor. 

The Hardware RTOS implemented for accelerating eCos, HW-eCos is interfaced to an ARM 

processor requires fewer gates to implement and provides better speedup. Communication speed between 

RTOS and hardware overshadowed the speed gain by hardware scheduler is overcome by S. Chandra et al. in 

[35] by intelligent design. Paper does not discuss the number of tasks and resources supported by this system. 

SRTOS proposed by Z. Murtaza, S. Khan et al. [36] aims at real-time DSP application which is 

targeted on AVZ21 DSP processor. Though this paper doesn’t provide any experimental test result but 

system supports additional instruction for fast resource allocation and context switching. 

M. Song et al. [37] come up with H-Kernel, an outcome of through use of FPGA and thoughtful 

HW/SW co-design for specific application. Though system become more complex and bulky as number of 

task increases but increase in performance in the tune of 50-60%, is achievable with the system with small 

numbers of task.  

Sebastien Pillement et al. [38] proposed DART – an FPGA based reconfigurable architecture which 

deals concurrently with high-performance, flexibility and low-energy constraints. Flexibility of FPGAs is 

achieved at a very high silicon cost interconnecting huge amount of processing primitives. These 

interconnection and configuration overheads result in energy waste. DART was designed as a platform-based 

architecture which define cluster level interface to implement user dedicated logic which allows for the 

integration of application-specific operators which efficiently support bit-level parallelism. The main concern 

of this class of architectures is high reconfiguration overhead. 

ARPA-MT multi-threading processor with five stage pipeline system is proposed by A. S. R. 

Oliveira et al. [39]. This system supports heterogeneous task and context switches without hampering the 

processor performance. 

Latency introduced due to PLB bus interface in the system can be removed by better and more 

direct connections between CPU and coprocessor as proposed by Luis Almeida et al. in [40, 41] OReK_CoP 

i.e. Hardware implementation of OReK Real-Time Kernel. All kernel functions execute in absolute time and 

almost in parallel, without interfering CPU which improves determinism and improve resource utilization.  

Xaingrong Zhou, Peter Petrov et al. [42] presented model by converging compiler, micro-

architecture and OS kernel to reduce the context switching cost and improve overall responsiveness which 

the main source of performance degradation in most of the HW SW based solutions. In this proposed model 

context switching may be deferred until next switch point to limit the number of context registers required to 

hold state. Though this arrangement results in more deadline miss which can be avoided by more complex 

and good RTOS kernel design. 

ARTESSO architecture as proposed by N. Maruyama et al. in [43], ported RTOS, checksum 

calculation, memory copying and TCP header rearrangement to hardware. It uses novel virtual queue instead 

of FIFO based queues used in RTU and STRON, which are logic expensive. The author claims that this 

system is 6-9 times faster than STRON and 7 times more energy efficient than its software counterpart. 

Numbers of research projects have approached the task of designing OS for FPGA based 

reconfigurable computers (RC). By providing native kernel support for FPGA hardware Hayden Kwok-Hay 

et al. [44-46] proposed BORPH, an operating system designed for FPGA-based RC. BORPH offers a 

homogeneous UNIX interface for both software and hardware processes. Hardware processes inherit the 

same level of service from the kernel.  

Static scheduling of DAGs (Direct Acyclic Graph) on multi-reconfigurable-unit system under strict 

real-time constraints and from a parallel processing perspective is proposed by Ikbel Belaid et al. [47]. 

Clustering the task, mapping the task in these clusters and placing these clusters on reconfigurable devices, 

dynamic partial reconfiguration and efficient placement are achieved. However, this approach face difficulty 
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in dealing with nondeterministic systems with run-time characteristics that are not well known before the 

DAG running and this approach will work only for small DAGs. 

HartOS- Hardware implemented Real-Time Operating System is proposed by Lange A.B. et al. [48, 

49] is designed to be very flexible and support most of the features normally found in a standard software 

RTOS directly in hardware without sacrificing flexibility. The HartOS’s ability to run kernel at a higher 

clock frequency than the microprocessor, enables more tasks to be processed serially at the same tick 

frequency and thus speed up the part of the API functions executed in the kernel. Comparative study of 

various methodologies/models reviewed in the literature is given in the Table 1[50]. 

 

 

Table 1. Comparative study of various methodologies/models 

Methodology/ Model Architecture Used & Claims by Authors 

FASTCHART (1991)   

Hybrid  [7]  

RISC based processor with Load Store architecture. Migrated full kernel to Hardware to improve 

determinism and remove jitter. 

POLIS (1991)  
Hybrid [8]  

Co-design Finite State Machine (CFSM) design. Flexibility to evaluate HW/SW partitioning, 
architecture & scheduler through mixed implementation of SW & ASICs. 

FASTHARD (1992) 

 Hybrid [10] 

Memory mapped design (address/data bus). HW based RT Kernel to support external interrupts & 

rendezvous. 
RTU (1994 )  

H/W based [12] 

Memory mapped design (VME bus). Supports multiple task, binary semaphores, event flags, watchdogs 

with minimum overheads and improved predictability. 

Silicon TRON (1995)  
Hybrid [14] 

Memory mapped design (address/data bus). Improve determinism and supports task mgt., flags, 
semaphores, timers & external interrupt. 

VULCAN (1995) 

 Hybrid [15]  

CDFG based fine grained mapping design. Hardware/software partitioning results in reducing the 

overall cost. 
CHINOOK (1996)  

Hybrid [17] 

Distributed Architecture. Supports mapping of processor & peripherals with strict timing constraints 

with automated interface synthesis. 

COWARE (1996)  
Hybrid [19] 

Memory mapped design (address/data bus). Supports re-use, encapsulation of HW & SW by separation 
of functional behavior to supports heterogeneous HW/SW DSP systems. 

COSYMA (1997)  

Hybrid [11] 

Memory mapped design (address/data bus). Uses novel list & path-based scheduling to estimate HW 

execution time & speedup SW executions to meet timing constraints. 

F-Timer (1997)  

Hybrid [23] 

Memory mapped design (address/data bus). Supports external interrupts by reducing overall RTOs 

overheads with improved determinism. 

Spring Coproc (1999)  
Hybrid [25] 

Memory mapped design (address/data bus). Supports fine granularity of  task deadlines & 
multiprocessors with guaranteed scheduling without blocking resources. 

ELLF Sched. Coproc. (2000)  

Hybrid [26] 

Memory mapped design (address/data bus). Supports ELLF algorithm with dynamic priority calculation 

by exploring parallelism in HW. 
The δ-Framework (2002)  

Hybrid [28] 

Memory mapped design (address/data bus). Uses less nos. of gates for equivalent HW area targeted for 

HW/SW co-design. 
Mooney (2003)  

Hybrid [29] 

Memory mapped and instruction set acceleration based design. Configurable scheduler which supports 

Priority based, Rate monotonic & EDF algorithms & high tick rate. 

Nano-processor (2003)  
Hybrid  [31] 

Memory mapped design (address/data bus). Provides flexibility of choosing services to perform in HW 
with faster execution with compatibility with range of hardware. 

RT Task Manager (2003)  

Hybrid [33] 

Memory mapped design (address/data bus). Supports static priority & handles task, time & event mgt. 

with same tree by migrating routine task to HW. 
HaRTS (2006)  

Hybrid [34] 

OPB Bus Scheme based design. Requires less power, less chip area and supports high tick frequency 

and granularity with lowering jitters. 

LITMUSRT (2006)  

S/W based [21] 

Push/Pull approach. Effective testbed to evaluate diff RT Scheduler & also supports G-EDF based 

scheduling with private queue for each processor. 

HW- eCos (2006)  

Hybrid [35] 

Memory mapped design (address/data bus). Removes context switching overheads through interrupt 

line to CPU, reduce code size and thus improve performance. 
Silicon RTOS (2006)  

Hybrid [36] 

Memory mapped design (address/data bus). Supports external interrupt management & uses priority 

based scheduling to make RT DSP applications efficient. 

H-Kernel (2007)  
Hybrid [37] 

Memory mapped design (address/data bus). Supports priority based task, interrupt, event & time mgt 
through H-kernel and performance through thoughtful HW/SW co-design. 

OReK_CoP (2009)  

Hybrid [41] 

PLB bus interface with stack based priority ceiling design. Ported OReK kernel to HW to improve 

performance & supports asynchronous interrupt handling which improve determinism  
Xiangrong  et al (2010)  

S/W based [42] 

Micro-architecture & OS kernel. Uses micro-architecture to lower context switching and improve 

responsiveness. 

ARTESSO (2010)  
Hybrid [43] 

TCP/IP protocol. Improve throughput by moving TCP Header calculations to HW & supports priority 
based FCFS scheduler by using novel virtual queue structure. 

BORPH (2011)  

S/W based  [45]  

OS uses Virtual file system. Reduces context switching drastically by exploiting the benefits of 

parallelism and FPGA reconfigurability. 
ARPA-MT (2011)  

Hybrid  [38] 

Stack based priority ceiling design. Specialized, Predictable and customized Processor design which 

supports heterogeneous task & schedules using RM or EDF protocol. 

HartOS (2012)  
 Hybrid  [48]  

FSL-AXI stream interface. Interrupt handled as task & mutex are protected by stack based priority 
ceiling which reduces jitters and memory footprints. 

 

 

Scheduling algorithm plays as important role in the design of real-time systems which involves 

allocation of resources and time to jobs in such way that certain performance requirements are met. Most of 
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the model discussed and reviewed are mainly focused on to improve the performance by migrating some of 

the house keeping routine jobs from software to hardware with a aim to leverage the potential of parallel 

processing of hardware which can further be improved to a greater extent if more realistic scheduling 

algorithm is devise and migrate it on hardware to assist processor and RTOs so as to increase the overall 

performance without increasing memory footprint and power consumptions. 

 

 

4. HARDWARE SOFTWARE CO-DESIGN TASK SCHDULER  

Mostly researchers dealing with real-time system scheduling, assumes scheduling constraints to be 

precise. But in practical reality, the values of these parameters are vague in most of the cases. To overcome 

these limitation of vagueness of jobs scheduling parameters [51], Fuzzy logic play important role in 

generating most optimal scheduling which enhance the utilization of the resources and thus increases the 

overall schedulability of the system by treating these vague scheduling parameters are treated as fuzzy 

variables. In this research paper, a two phase adaptive scheduling algorithm is developed and migrated on 

FPGA to harness the potential of parallel processing which will compensate added computational cost for 

executing of complex fuzzy algorithms. 

 

4.1   Architecture 

We proposed Fuzzy Inference System (FIS) based adaptive hardware task scheduler framework 

which is discussed in subsequent paragraph basically consists of: 

1. Global Fuzzy scheduler – Long term scheduler. (FIS 1)  

2. Local Adaptive scheduler – Short term scheduler. (FIS II)   

Both of these scheduler work in cascade and are migrated on hardware which will work in 

synchronous with processor and RTOs to fulfill the overall systems objectives as illustrated in figure 1.  

 

 

 
 

Figure 1. Proposed FIS based Adaptive Hardware Task Scheduler 

 

 

To build a fuzzy system, inputs and output(s) to it must be first selected and partitioned into 

appropriate conceptual categories which actually represent a fuzzy set on a given input or output domain. 

Parameters which affects the schedulers performance are selected as input to the Fuzzy Inference System 

(FIS) [52, 53], which consist of five stages: 

1. Fuzzifying inputs 

2. Applying fuzzy operators 

3. Applying implication methods 

4. Aggregating outputs 

5. De-fuzzifying outputs 
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Here Madani’s Fuzzy inference method of TSK or simply Sugeno method of fuzzy inference may 

be used [54-57]. Block diagrams of FIS I and FIS II along with the parameters selected as Input and Output 

are along with surface viewer are shown in figure 2. Input to FIS I are - Job Exterior Priority (JEP), Job 

Processing Priority (JPT) & Job Waiting Time (JWT) which generates Job Processing Priority (JPP). Input to 

FIS II are – Job Processing Priority (JPP) generated by FIS I and Job Worst Case Execution Time (JWCET) 

which generates Job Final Priority (JFP) 

Output of the FIS I is single value which is treated as Job Processing Priority (JPP) and maintained 

in global queue in sorted order. This newly calculated JPP along with task’s worst-case execution time 

(WCET), feed to FIS II, a second stage scheduler. The working of proposed novel Two phase Fuzzy 

Inference System based hardware task scheduler which uses fuzzy logic to model is depicted  as –  

An arrival of new task in system initiates the application. These new task are stored in Arrival 

Queue in First-in-First-out manner (FIFO) waiting to be get processed by the Fuzzy Inference System (Phase 

I). Task entering the systems are tagged with some basic parameters which play important role in scheduling 

these task. These jobs are stored in sorted order as per newly calculate Job Processing Priority (JPP). Task 

queued in Global queue are feed to Fuzzy Inference System (Phase II). Local Queue holds the task in sorted 

order as per the Job Final Priority (JFP) calculated by FIS 2. Master controller keeps track of actual execution 

time (AET) of each task being processed and if the difference between Worst Case Execution Time (WCET) 

and AET for a task in beyond certain threshold value i.e. δ (t), then is it notified back to FIS II which will 

update the value of WECT by AET and consider this new updated value of WCET during next scheduling 

cycle. Task blocks on shared resources are stored in Block Queue where semaphore is used to resolve the 

deadlock and task are moved from block queue to Waiting Queue if the task is yet to be complete. These 

tasks are then added back to Arrival Queue along with newly entered task in FIFO order. 

 

 

 
 

Figure 2. Fuzzy Inference System I & II block diagram 

 

 

4.1.1 Adaptive Fuzzy Scheduling 

Under traditional task model like periodic, sporadic etc., the schedulability of system is based on 

each task’s worst-case execution time (WCET), which defined the maximum amount of time each of its jobs 

can execute. The disadvantage of using WCETs is that system may be deemed un-schedulable even if they 

would function correctly most of the time when deployed. This drawback can be overcome by making our 

scheduler adaptive to the runtime varying conditions, to allocate per-task processors time share, instead of 

always using constant share allocation based on constant WCET and readjusting the priority of task. When 

there is variation in the WCET and the actual execution time of a particular job beyond some predetermined 

threshold value, adaptive task schedulers is invoked with actual execution time and reschedule the task and 

refresh and reorder the tasks in local queue accordingly. This results into adjusting the per task processor 
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time share based on the runtime conditions which will effectively increases the overall schedulability and 

processor utilization. Overall quality-of-service (QoS) can be improved by ignoring the transient overload 

conditions. Dispatcher will dispatch the task from local queue to processors bank to get serve. 

Further resource synchronization is used to optimize scheduling of the tasks blocked on shared 

resource which are parked on blocked or waiting queue. Task blocks on shared resources are stored in Block 

Queue are moved from block queue to Waiting Queue if the task is yet to be complete. These tasks are then 

added back to Arrival Queue along with newly entered task in FIFO order. Resource synchronization module 

which implements priority queue with aging to avoid the task starvation and thus improve chance of fair 

treatments to all the tasks in the queue is used to remove the deadlocks on resources among task from block 

task queue which will increase the overall performance of the RTOs. Processors share allocations are 

adjusted using feedback and resource synchronization techniques [58].  

Fine grained time management and frequent sorting and re-arrangements of tasks in Local Queue 

and Waiting Queue increases the CPU overhead and thus affects the processor utilization which can be 

overcome by implementing these queues as hardware priority queue as shown in figure 3. 

 

 

 
 

Figure 3. Hardware Priority Queue architecture 

 

 

4.1.2 Queue Loading Process 

Queue loading is accomplished by inserting the newly arrived task at the bottom of binary heap. 

Process of repeatedly comparing and swapping with adjacent parent node is performed until the priority of 

newly arrived task is less than its parents. Shift register mechanism shown in figure 4 inserts the newly 

arrived task in constant time. The heap property ensures that elements are sorted in order. 

 

4.1.3 Queue Un-loading Process  

Remove the root task from the queue and reconstruction of the heap constituted the queue un-

loading operation. Root element is removed by replacing it with the last element in the queue to keep the 

heap balanced. Process of repeatedly comparing and swapping with smallest of the child node is perform 

until the priority root node is less than its child. Highest priority value is obtained in constant time and as 

priority queue is managed in hardware, the processor is not required to wait for the operation to complete. 

 

4.1.4 Resource Synchronization Process 

Task which are blocked on shared recourses are park on blocked queue which is implemented as 

hardware priority queue. To avoid the task starvation and fair share of CPU time, Priority queue with aging 

technique is used. Task upload priority is calculated, which will used to decide which task next to be moved 

from blocked queue to waiting queue. 

It is observe that, generally to ensure tasks must meet its deadline, the scheduler’s WCET are often 

overestimated. This causes system to be under-utilise and wastes CPU resources. Here we have examined 

how the scheduler overheads and its variation can be reduced by migrating the scheduling functionality to 

hardware logic. Further by accommodating the varying WCET on runtime, in scheduling, there is a twofold 
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increase in the idle time of CPU which can be utilised effectively and thus results in increase in overall 

performance, enhance system predictability and timing resolution. An analytical result comparison of three 

different cases namely:  

1. RTOS with Software Scheduler 

2. RTOS with Hardware Scheduler &  

3. RTOS with Adaptive Hardware Scheduler is depicted in figure 4 

 

 

5. CONCLUSION  

The conclusion from a comprehensive literature review of the publication throughout the last three 

decades, is that the major drawback from software based RTO’s can be removed by implementing the entire/ 

partial kernel of a real-time operating system in hardware. All past attempts to design a hardware RTOS 

kernel has had limitations either in form of lacking key RTOS features/resources, being inflexible in terms of 

configurability or perhaps suffering from poor performance. By addressing the set of desired features, 

performance goals, clever design and utilization of the latest FPGA technologies, the implementation of a full 

featured and flexible hardware based RTOs is be possible which could address the shortcomings found in the 

literature A hardware Intellectual Property (IP) can be used for implementing routine frequently used 

housekeeping activities like scheduling, inter-process communication and time management control from the  

software OS-kernel to hardware unit. This result in significantly reducing the overhead by migrating kernel 

services to hardware which will improve the response time by increasing the CPU utilization. A hardware 

kernel executes in parallel to the CPU, minimizes the processor time for scheduling activity and thus relieves 

pressure from the CPU which gets almost full execution time for the application tasks. There is less software 

code in memory since the functionality is implemented in hardware instead [23].  

 

 

 
 

Figure 4. Scheduler Execution Time Variations 

 

 

A software OS will generate a clock tick interrupt to the CPU when either it is executed or the lists 

of tasks (queues) are worked at or new periodic delay times are calculated for the tasks. With the hardware 

kernel in the system, it checks all queues concurrently and only generates an interrupt to the CPU when there 

is to be a task switch [59, 60]. Another advantage of having the kernel in hardware is the possibility to use 

complex scheduling algorithms, unlimited of different queue types without any performance loss.  

When real-time kernels are implemented in software, one of the disadvantages is that the execution 

time for the service calls will have a minimum and a maximum time [61]. The time gap can be big and the 

worst-case time is one of the factors that will decide the utilization factor of the system. The scheduling time 
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varies with the number of tasks and scheduling algorithm and must be bounded by a pessimistic worst case 

execution time, which decrease the determinism. 

We have proposed two phase FIS based hardware task scheduler which uses fuzzy logic to model 

the uncertainty at first stage along with adaptive framework that uses feedback in second stage. Scheduling 

based on static WCET will results in lower utilization of processors, which can be overcome by adaptive 

feedback mechanism which will update the WCET parameter of the task with AET, if the difference between 

the WCET & AET is exceeding the pre define threshold value τ, which allows processors share of task 

running on multiprocessor to be controlled dynamically at runtime and thus increases the overall processor 

utilization and thus the schedulability. Further, Starvation of low priority task problem is overcome by 

Resource synchronization module which in turns avoids the aging of task. Because of high granularity, 

frequent sorting and updation of the tasks in queue increases the overhead which can be reduced to greater 

extent by using Hardware Priority Queue to store the task which increase the sorting speed and thus lessen 

the burden of CPU. This increases the overall utilization of CPU and increases the schedulability of the tasks.   

Our future work is to map this proposed model on MicroBlaze soft processor core as MicroBlaze 

FPGA designs are readily available and can be implemented with little effort. The FreeRTOS port in 

MicroBlaze is being targeted to be modified and run tasks concurrently on multiple processors as FreeRTOS 

provides simple, easy to use and highly portable kernel. The aim to produce a version of FreeRTOS that 

supports multi-core hardware and efficient hardware based task scheduler 
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