
International Journal of Reconfigurable and Embedded Systems

Vol. 7, No. 3, November 2018, pp. 186~194

ISSN: 2089-4864, DOI: 10.11591/ijres.v7.i3.pp186-194 186

Journal homepage: http://iaescore.com/journals/index.php/IJRES/index

Design and Implementation of LCG-Trivium Key Stream

Generator into FPGA

Tchahou Tchendjeu A. E.1, Tchitnga Robert2, Fotsin Hilaire B.3
1 Department of Electrical and Power Engineering, University of Bamenda, Cameroon

2,3Department of Physics, Universityof Dschang, Cameroon

Article Info ABSTRACT

Article history:

Received Aug 7, 2018

Revised Oct 8, 2018

Accepted Oct 22, 2018

This paper presents the Design and implementation into Field Programmable

Gate Array (FPGA) of a combine stream cipher and a simple linear

congruential generator circuit to produce key stream. The LCG circuit is used

to produce initialization vector (IV) each 264 clock cycle to the cipher trivium

in other to strengthen the complexity of the cipher to known attacks on

trivium. The LCGTrivium is designed to generate 2144 bits of keystream from

an 80-bits secret and a variable 80-bits initial value. To implement the LCG-

Trivium on FPGA, we use VHDL to build a simple LCG and Trivium and a

state machine to synchronize the functioning of the LCG and Trivium.

The number of gates, memory and speed requirement on FPGA is giving

after analysis. The design is simulated, synthesized and implemented in

Quartus II 10.1, ModelSim-Altera 6.5 and Cyclone IV E EP4CE115F29C7N.

Keywords:

Cryptography

FPGA

Key stream

Linear congruential

Trivium

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Tchahou Tchendjeu A. E.,

Department of Electrical and power Engineering,

University of Bamenda,

P.O. Box 39 Bambili, Cameroon.

 +237 677103754.

Email: tchahoutchendjeu@yahoo.fr

1. INTRODUCTION

Cryptography provides tchniques, mechanisms and tools for secure private communication and

authentication on Internet and other open networks. It is almost certain that in the coming years every bit of

information owing through a network of any kind will have to be encrypted and decrypted. All devices

connected to a network should therefore incorporate mechanisms that implement cryptographic function to

ensure safe transfers. With this in mind, it is necessary to design and implement hardware structures which

are suitably efficient in terms of area, operating frequency and power consumption. An additional challenge

is that the implementation must be constructed to withstand cryptographic attacks launched against them by

adversaries who may have access to communication channels.

Trivium is a synchronous stream cipher designed to generate up to 264 bits of key stream from an

80-bit secret key and an 80-bit initial value (IV). Algebraic attacks [1] are commonly applied to stream

ciphers based on shift registers. To attack Trivium, Raddum [2] used an algebraic relabeling technique, where

the state-update bits are represented using new variables, instead of nonlinear combinations of initial state

bits [3]. This prevents equations of high degrees from being generated. For key stream generators which use

a linear output function (as Trivium-like cipher do), Berbain et, al.[4] expressed new feedback bits of a Non-

Linear Feedback Shift Register (NLFSR) as linear combinations of key stream bits and internal state bits.

From this, we see that, the attacks on Trivium build a system of Boolean equations with unknown

and the solution of the system of equations is used to recover the secret key. In the present paper, we have

chosen to combine a linear congruential generator with the Trivium to generate up to 2144 bits of key stream

to reinforce the complexity of the system of Boolean equations to be generated during the algebraic attacks.

IJRES ISSN: 2089-4864

Design and implementation of LCG-trivium key stream generator into FPGA (Tchahou Tchendjeu A. E)

187

The remainder of the paper is organized as follows. Section 2 deals with theory of LCG and Trivium

specification algorithm. The design circuit of LCG-Trivium for FPGA implementation and nets connections

are covered in section 3. Section 4 provides some implementation data and analysis. Finally, the conclusions

are viewed in section 5.

2. LCG AND TRIVIUM SPECIFICATION

2.1. Linear Congruential Generator

There is a popular and most used method to generate random number called linear congruential

generator. The idea was introduced by Lehmer [5] according to sequential formula in equation (1), where a is

the multiplier, c the increment factor, and m the modulus. Parameters a, c and m have to be chosen carefully

in order to avoid repetition of similar numbers before m [6-8]. Park & Miller suggested a good results will be

obtained by choosing c=0 [9]. The modulus m should be a large prime integer, multiplier a must be an integer

in the range 2, 3 … m-1. The cycle length of LCG would never exceed modulus m, but it could be maximized

using three following conditions [7, 9, 10]:

a. c is relativily prime to modulus m,
b. multiplier a-1 is a multiple of every dividing modulus m,
c. multiplier a-1 is a multiple of four when modulus m is a multiple of four too.

 (1)

2.2. Trivium

As shown in Figure 1, at the heart of Trivium are three shift registers, A, B and C. The lengths of

the registers are 93, 84 and 111, respectively. The XOR-sum of all three register outputs forms the key

stream Si. A specific feature of the cipher is that the output of each register is connected to the input of

another register. Thus, the registers are arranged in circle-like configuration.

Figure 1. Internal structure of the stream cipher Trivium

The cipher can be viewed as consisting of one circular register with a total length of 93 +84 +111 = 288.

Each of the three registers has similar structure as described below.

The input of each register is computed as the XOR-sum of two bits:

a. The output bit of another register according to Fig. 1

b. One register bit at a specific location is fed back to the input

The positions are giving in Table 1. The output of each register is computed as the XOR-sum of three bits:

a. The rightmost register bit,

b. One register bit at a specific location is fed forward to the output. The positions are given in Table 1,

 ISSN: 2089-4864

 IJRES Vol. 7, No. 3, November 2018 : 186 – 194

188

c. The output of a logical AND function whose input is two specific register bits. Again, the positions of

the AND gate inputs are given in Table 1.

Note that the AND operation is equal to multiplication in modulo arithmetic. If we multiply two unknowns,

and the register contents are the unknowns that an attacker wants to recover, the resulting equations are no

longer linear as they contain products of two unknowns. Thus, the feed forward paths involving the AND

operation are crucial for the security of Trivium as they prevent attacks that exploit the linearity of the cipher.

Table 1. Specification of Trivium
 Register length Feedback bit Feed forward bit AND input

A 93 69 66 91; 92

B 84 78 69 82; 83
C 111 87 66 109; 110

3. LCG-TRIVIUM CIRCUIT DESIGN

3.1. Design Circuit of LCG

Figure 2 shows the commonly used block diagram for a LCG operation (seed is ignored). It requires

a multiplier, an adder, a comparator and a subtractor blocks. Multiplier is used to multiply previous random

value X with a. The result is then added to the increment c. The sum is compared to modulus m. Thus,

if , then the number is considered a random one. Otherwise, the next operation to undertake is

a subtraction of m from the above number, so that the difference becomes a random number.

Figure 2. Block diagram of LCG operation

The block diagram of Figure 2 is involving arithmetic operation such as multiplication, addition,

subtraction and comparion which make it cumbersome. In order to simplify the process, we suggest to

replace the subtractor and comparison block simply by a register as shown in Figure 3.

Figure 3. Design circuit of LCG

IJRES ISSN: 2089-4864

Design and implementation of LCG-trivium key stream generator into FPGA (Tchahou Tchendjeu A. E)

189

The design circuit consist of a multiplier, an adder, and a register. Port input Seed, A, and C are used

to pass initial value, multiplier and increment into the circuit. Meanwhile, port IV is used to taking out

the resulted random numbers.

The functioning process of the design is as follows, initially, signal load has to be HIGH to load

the seed value at the output of the register, it also determine the start of the operation. The predefined value

(seed) and increment have to be available at the input ports before load goes LOW. After that, each times

clock goes HIGH, a random number is produced.

3.2. Design Circuit of Trivium
The design circuit of trivium Figure 4 consists of three registers (A, B, C) of different length, three

AND gates seven XOR gate. Port input IV , KEY , and 7 are used to pass initial value, Initialization Vector,

the encrypting key and a non-zero value into the registers. Meanwhile, port Sout is used to taking out

the key stream.

The circuit is controlled by two signals load and WE. The functioning process of the design is as

follows: initially, signal load has to be HIGH (WE = HIGH) to load the IV value at the output register A,

the key value at the output register B and the value 7 at the output register C. It also determines the start of

the operation. The predefined value IV, KEY and 7 have to be available at the input ports before load goes

LOW (WE=HIGH). After that, each time the clock goes HIGH, a key stream is produced. Each time WE

goes LOW while load remain LOW, the value IV is reloaded at the output of register A.

Figure 4. Design circuit of Trivium

3.3. LCG-Trivium Design

Figure 5 shows the diagram of the LCG-Trivium circuit. It is made up of the LCG and Trivium

circuit design in this paper, and the CSM (Cipher State Machine). The CSM is designed according to

encryption with Trivium.

 ISSN: 2089-4864

 IJRES Vol. 7, No. 3, November 2018 : 186 – 194

190

Figure 5. Block diagram circuit of LCG-Trivium

Let's look at the details of running Trivium:

Initialization. Initially, an 80-bit IV is loaded into the 80 leftmost locations of register A, and

ann80-bit key is loaded in the 80 leftmost locations of register B. All other register bits are set to zero with

the exception of the three rightmost bits of register C, i.e., bits C109, C110, and C111 which are set to 1.

Warm-up phase. In the first phase, the cipher clocked 4 x 288 = 1152 times. No cipher output is

generated.

Encryption Phase. The bits produced hereafter, i.e., starting with the output bit of cycle 1153, form

the key stream. The warm-up phase is needed for randomizing the cipher sufficiently. It makes sure that

the key stream depends on both the key and the Initialization Vector. From the details of running Trivium,

an ASM chart (Algorithmic State Machine chart) is develop and presented in Figure 6.

Figure 6. ASM chart of CSM

IJRES ISSN: 2089-4864

Design and implementation of LCG-trivium key stream generator into FPGA (Tchahou Tchendjeu A. E)

191

The ASMD has four states. The Reset state indicates that the circuit is in the pre-initialization,

here, the initial value Seed is placed to the output register of LCG and the tristate buffer moved to high

impedance, when Reset is asserted. When the next rising edge of clock is asserted, the FSMD moves to

the initialization state and the value at the output of LCG and the value of Key are loaded into Trivium as IV

and KEY respectively. At the next clock rising edge, the FSMD moves to warm-up state and the cipher is

sufficiently randomized for 1152 clock cycles. When the cipher is sufficiently randomized, the FSMD moves

to encryption state and the tristate buffer is enable, a key stream is generated for each clock cycle and a new

value of IV is generated and loaded in the Trivium after each 264 clock cycles.

4. SIMULATION RESULTS

The proposed block diagram of LCG-Trivium shown in Figure 5 is designed in Quartus II. 10.1 and

ModelSim-Altera 6.5e. using VHDL-HDL and experimentally verified on FPGA DE2-115 Board. Some

important informations of synthesis results are presented.

4.1. RTL Simulation Diagram

Figure 7 depicts the RTL technical schematic for the LCG-Trivium cipher. CSM receives two

signals, clock and reset, and generates four signals. Signal BO control the tristate buffer to be sure that not

cipher output is generated during the 1152 cycles after initialization. Signal LL is used to load initial values

into LCG_TOP. Signal RR is used to load initial values into registers of Trivium. Signal WE enable

LCG_TOP to generate a new random value and also used to load into register A of Trivium the new value of

IV. LCG_TOP block receives six signals and generates one, which is the Initialization Vector. Trivium block

receives five signals and generates one, which is the cipher output bit.

Figure 7. RTL schematic of LCG-Trivium

4.2. Behavior Simulations

Figure 8 to Figure 11 depict the results of behavior simulation of the design LCG-Trivium. Figure 8

shows the behavior of main signals of the design circuit in the Reset and Initialization phases. At the

beginning of the Reset phase, only key, seed, increment and multiplier signals have known values while other

are unknown, the key stream signal is at high impedance and reset signal is HIGH. When the reset signal

goes to LOW, then at the next rising edge of clock signal, the LCG block generates the first random number

and that number is the IV signal. With this, the system moves to the Initialization state. RR signal goes LOW,

LL signal goes HIGH, BO goes LOW, the key stream signal remain to HIGH impedance and WE goes HIGH

then the initial values are loaded into the registers of Trivium at the next rising edge of clock signal and the

system moves to next state which is warm-up. Figure 9 shows the behavior of main signals in the warm-up

phase. Here the key stream signal remain at HIGH impedance. Figure 10 shows the system in the encryption

phase. Cipher output is generated every times clock goes HIGH. A new value of IV is also generated every

times WE signal goes LOW. Figure 11 shows the randomizing of the cipher during the warm-up phase.

 ISSN: 2089-4864

 IJRES Vol. 7, No. 3, November 2018 : 186 – 194

192

Figure 8. Simulation result of LCG-Trivium in reset and initialization phase

Figure 9. Simulation result of LCG-Trivium in warm-up phase

Figure 10. Simulation result of LCG-Trivium in encryption phase

IJRES ISSN: 2089-4864

Design and implementation of LCG-trivium key stream generator into FPGA (Tchahou Tchendjeu A. E)

193

Figure 11. Simulation result of Trivium register’s in warm-up phase

4.3. Synthesis Results
Some important data after synthesis step of the proposed LCG-Trivium design circuit into cyclone

IV-E EP4CE115F29C7N chip are summarized as shown in Table 2. From the Flow Summary report, it can

be seen that the LCG-Trivium circuit Figure 5 required 563 logic elements, 491 combinational functions, 301

dedicated logic registers, 95 memory bits and 9 embedded multiplier 9-bit elements. From the report paths,

one path is found with the longest delay of 13.420 ns.

Table 2. Flow Summary Report
Flow Summary Report

Total logic element 563/114,480 < 1%

Total combinational functions 491/114,480 < 1%
Dedicated logic registers 301/114,480 < 1%

Total pins 3/529 < 1%

Total memory bits 95/3,981,312 < 1%
Embedded Multiplier 9-bit elements 9/532 < 2%

Total PLLs 0/4 < 0%

5. CONCLUSION

FPGA implementation of LCG-Trivium has been designed and implemented on cyclone IV-E

EP4CE115F29C7N chip successfully. The proposed circuit is a combination of LCG and Trivium to realize a

stream cipher for cryptographic applications. A state machine has designed to add to the system in

the objective to coordinate the functioning of the two block. LCG circuit generates random numbers after

each 264 cycles of clock and it is load into Trivium, while Trivium generates key stream for each clock cycle

in the encryption phase as the ModelSim simulation depicts. With this, the cipher complexity is improved.

The quartus simulation shows that, the area utilization is optimum. Based on the longest delay path,

the designed circuit can run at a maximum frequency of 75 MHz.

ACKNOWLEDGEMENTS

Tchahou Tchendjeu thanks Dr Emmanuel FOUOTSA for allowing him to attend the 2016 African

Mathematical School (AMS) at The University of Bamenda and the anonymous refrees for useful comments

for the improvement of this work.

REFERENCES
[1] N. T. Courtois, J. Meier, "Algebraic Attacks on Stream Cipher with Linear Feedback," Advances in Cryptology-

ASIACRYPT. Lecture Note in Computer Science, Springer, Vol. 2656, pp. 345-359, 2003.

 ISSN: 2089-4864

 IJRES Vol. 7, No. 3, November 2018 : 186 – 194

194

[2] H. Raddum, "Cryptanalytic Results on Trivium," eTREAM, ECRYPT Stream Cipher Project,

http://www.ecrypt.eu.org/stream/papersdir/2006/039.pdf.

[3] N. T. Courtois, J. Pieprzyk, "Cryptanalysis of Block Cipher with Overdefined System of Equations," Advances in

Cryptology-ASIACRYPT. Lecture Note in Computer Science, Springer, Vol. 5479, pp. 278299, 2002.

[4] C. Berbain, et al., "Algebraic and Correlation Attacks against Linearly Filtered Non Linear Feedback Shift

Registers," Selected Area in Cryptography. Lecture Note in Computer Science, Springer, Vol. 5381,

 pp. 184-198, 2008.

[5] D. H. Lehmer, "Random Number Generation on the BRL High Speed Computing Machines," Math. Rev, Vol 15,

pp. 559-560, 1954.

[6] N. Harald, "Random number generation and quasi-monte carlo methods. Society for Industrial and Applied

Mathematics", Philadelphia.

[7] C. Dutang, W. Diethelm, "A note on random number generation," 2009

[8] Wolfram Mathematica "RANDOM NUMBER GENERATION," copyright Tutorial Collection 2008.

[9] S. K. Park, K. W. Miller, "Random number generators: good ones are hard to _nd," Association for Computing

Machinery, Vol. 31, pp. 1192-2001, 1988.

[10] D. E. Knuth, "The Art of Computer Programming," seminumerical algorithms. Massachusetts: Addison-

Wesley 2002.

