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This paper presents the Design and implementation into Field Programmable 

Gate Array (FPGA) of a combine stream cipher and a simple linear 

congruential generator circuit to produce key stream. The LCG circuit is used 

to produce initialization vector (IV) each 264 clock cycle to the cipher trivium 

in other to strengthen the complexity of the cipher to known attacks on 

trivium. The LCGTrivium is designed to generate 2144 bits of keystream from 

an 80-bits secret and a variable 80-bits initial value. To implement the LCG-

Trivium on FPGA, we use VHDL to build a simple LCG and Trivium and a 

state machine to synchronize the functioning of the LCG and Trivium. 

The number of gates, memory and speed requirement on FPGA is giving 

after analysis. The design is simulated, synthesized and implemented in 

Quartus II 10.1, ModelSim-Altera 6.5 and Cyclone IV E EP4CE115F29C7N. 
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1. INTRODUCTION 

Cryptography provides tchniques, mechanisms and tools for secure private communication and 

authentication on Internet and other open networks. It is almost certain that in the coming years every bit of 

information owing through a network of any kind will have to be encrypted and decrypted. All devices 

connected to a network should therefore incorporate mechanisms that implement cryptographic function to 

ensure safe transfers. With this in mind, it is necessary to design and implement hardware structures which 

are suitably efficient in terms of area, operating frequency and power consumption. An additional challenge 

is that the implementation must be constructed to withstand cryptographic attacks launched against them by 

adversaries who may have access to communication channels.  

Trivium is a synchronous stream cipher designed to generate up to 264 bits of key stream from an 

80-bit secret key and an 80-bit initial value (IV). Algebraic attacks [1] are commonly applied to stream 

ciphers based on shift registers. To attack Trivium, Raddum [2] used an algebraic relabeling technique, where 

the state-update bits are represented using new variables, instead of nonlinear combinations of initial state 

bits [3]. This prevents equations of high degrees from being generated. For key stream generators which use 

a linear output function (as Trivium-like cipher do), Berbain et, al.[4] expressed new feedback bits of a Non-

Linear Feedback Shift Register (NLFSR) as linear combinations of key stream bits and internal state bits.  

From this, we see that, the attacks on Trivium build a system of Boolean equations with unknown 

and the solution of the system of equations is used to recover the secret key. In the present paper, we have 

chosen to combine a linear congruential generator with the Trivium to generate up to 2144 bits of key stream 

to reinforce the complexity of the system of Boolean equations to be generated during the algebraic attacks.  
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The remainder of the paper is organized as follows. Section 2 deals with theory of LCG and Trivium 

specification algorithm. The design circuit of LCG-Trivium for FPGA implementation and nets connections 

are covered in section 3. Section 4 provides some implementation data and analysis. Finally, the conclusions 

are viewed in section 5. 

 

 

2. LCG AND TRIVIUM SPECIFICATION 

2.1.  Linear Congruential Generator 

There is a popular and most used method to generate random number called linear congruential 

generator. The idea was introduced by Lehmer [5] according to sequential formula in equation (1), where a is 

the multiplier, c the increment factor, and m the modulus. Parameters a, c and m have to be chosen carefully 

in order to avoid repetition of similar numbers before m [6-8]. Park & Miller suggested a good results will be 

obtained by choosing c=0 [9]. The modulus m should be a large prime integer, multiplier a must be an integer 

in the range 2, 3 … m-1. The cycle length of LCG would never exceed modulus m, but it could be maximized 

using three following conditions [7, 9, 10]:  

a. c is relativily prime to modulus m,  
b. multiplier a-1 is a multiple of every dividing modulus m, 
c. multiplier a-1 is a multiple of four when modulus m is a multiple of four too. 
 

 
                                                                           (1) 

2.2. Trivium 

As shown in Figure 1, at the heart of Trivium are three shift registers, A, B and C. The lengths of 

the registers are 93, 84 and 111, respectively. The XOR-sum of all three register outputs forms the key 

stream Si. A specific feature of the cipher is that the output of each register is connected to the input of 

another register. Thus, the registers are arranged in circle-like configuration. 

 

 

 
 

Figure 1. Internal structure of the stream cipher Trivium 

 

 

The cipher can be viewed as consisting of one circular register with a total length of 93 +84 +111 = 288. 

Each of the three registers has similar structure as described below.  

The input of each register is computed as the XOR-sum of two bits: 

a. The output bit of another register according to Fig. 1 

b. One register bit at a specific location is fed back to the input 

The positions are giving in Table 1. The output of each register is computed as the XOR-sum of three bits: 

a. The rightmost register bit, 

b. One register bit at a specific location is fed forward to the output. The positions are given in Table 1, 
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c. The output of a logical AND function whose input is two specific register bits. Again, the positions of 

the AND gate inputs are given in Table 1. 

Note that the AND operation is equal to multiplication in modulo arithmetic. If we multiply two unknowns, 

and the register contents are the unknowns that an attacker wants to recover, the resulting equations are no 

longer linear as they contain products of two unknowns. Thus, the feed forward paths involving the AND 

operation are crucial for the security of Trivium as they prevent attacks that exploit the linearity of the cipher. 
 

 

Table 1. Specification of Trivium 
 Register length Feedback bit Feed forward bit AND input 

A 93 69 66 91; 92 

B 84 78 69 82; 83 
C 111 87 66 109; 110 

 

 

3. LCG-TRIVIUM CIRCUIT DESIGN  

3.1.  Design Circuit of LCG 

Figure 2 shows the commonly used block diagram for a LCG operation (seed is ignored). It requires 

a multiplier, an adder, a comparator and a subtractor blocks. Multiplier is used to multiply previous random 

value X with a. The result is then added to the increment c. The sum is compared to modulus m. Thus, 

if , then the number is considered a random one. Otherwise, the next operation to undertake is 

a subtraction of m from the above number, so that the difference  becomes a random number. 
 

 

 
 

Figure 2. Block diagram of LCG operation 
 

 

The block diagram of Figure 2 is involving arithmetic operation such as multiplication, addition, 

subtraction and comparion which make it cumbersome. In order to simplify the process, we suggest to 

replace the subtractor and comparison block simply by a register as shown in Figure 3. 
 

 

 
 

Figure 3. Design circuit of LCG 
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The design circuit consist of a multiplier, an adder, and a register. Port input Seed, A, and C are used 

to pass initial value, multiplier and increment into the circuit. Meanwhile, port IV is used to taking out 

the resulted random numbers.  

The functioning process of the design is as follows, initially, signal load has to be HIGH to load 

the seed value at the output of the register, it also determine the start of the operation. The predefined value 

(seed) and increment have to be available at the input ports before load goes LOW. After that, each times 

clock goes HIGH, a random number is produced.  

 

3.2. Design Circuit of Trivium 
The design circuit of trivium Figure 4 consists of three registers (A, B, C) of different length, three 

AND gates seven XOR gate. Port input IV , KEY , and 7 are used to pass initial value, Initialization Vector, 

the encrypting key and a non-zero value into the registers. Meanwhile, port Sout is used to taking out 

the key stream. 

The circuit is controlled by two signals load and WE. The functioning process of the design is as 

follows: initially, signal load has to be HIGH (WE = HIGH) to load the IV value at the output register A, 

the key value at the output register B and the value 7 at the output register C. It also determines the start of 

the operation. The predefined value IV, KEY and 7 have to be available at the input ports before load goes 

LOW (WE=HIGH). After that, each time the clock goes HIGH, a key stream is produced. Each time WE 

goes LOW while load remain LOW, the value IV is reloaded at the output of register A. 
 

 

 
 

Figure 4. Design circuit of Trivium 
 

 

3.3. LCG-Trivium Design 

Figure 5 shows the diagram of the LCG-Trivium circuit. It is made up of the LCG and Trivium 

circuit design in this paper, and the CSM (Cipher State Machine). The CSM is designed according to 

encryption with Trivium.  
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Figure 5. Block diagram circuit of LCG-Trivium 

 

 

Let's look at the details of running Trivium: 

Initialization. Initially, an 80-bit IV is loaded into the 80 leftmost locations of register A, and 

ann80-bit key is loaded in the 80 leftmost locations of register B. All other register bits are set to zero with 

the exception of the three rightmost bits of register C, i.e., bits C109, C110, and C111 which are set to 1. 

Warm-up phase. In the first phase, the cipher clocked 4 x 288 = 1152 times. No cipher output is 

generated. 

Encryption Phase. The bits produced hereafter, i.e., starting with the output bit of cycle 1153, form 

the key stream. The warm-up phase is needed for randomizing the cipher sufficiently. It makes sure that 

the key stream depends on both the key and the Initialization Vector. From the details of running Trivium, 

an ASM chart (Algorithmic State Machine chart) is develop and presented in Figure 6. 

 

 

 
 

Figure 6. ASM chart of CSM 
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The ASMD has four states. The Reset state indicates that the circuit is in the pre-initialization, 

here, the initial value Seed is placed to the output register of LCG and the tristate buffer moved to high 

impedance, when Reset is asserted. When the next rising edge of clock is asserted, the FSMD moves to 

the initialization state and the value at the output of LCG and the value of Key are loaded into Trivium as IV 

and KEY respectively. At the next clock rising edge, the FSMD moves to warm-up state and the cipher is 

sufficiently randomized for 1152 clock cycles. When the cipher is sufficiently randomized, the FSMD moves 

to encryption state and the tristate buffer is enable, a key stream is generated for each clock cycle and a new 

value of IV is generated and loaded in the Trivium after each 264 clock cycles. 

 

 

4. SIMULATION RESULTS 

The proposed block diagram of LCG-Trivium shown in Figure 5 is designed in Quartus II. 10.1 and 

ModelSim-Altera 6.5e. using VHDL-HDL and experimentally verified on FPGA DE2-115 Board. Some 

important informations of synthesis results are presented.  

 

4.1.  RTL Simulation Diagram 

Figure 7 depicts the RTL technical schematic for the LCG-Trivium cipher. CSM receives two 

signals, clock and reset, and generates four signals. Signal BO control the tristate buffer to be sure that not 

cipher output is generated during the 1152 cycles after initialization. Signal LL is used to load initial values 

into LCG_TOP. Signal RR is used to load initial values into registers of Trivium. Signal WE enable 

LCG_TOP to generate a new random value and also used to load into register A of Trivium the new value of 

IV. LCG_TOP block receives six signals and generates one, which is the Initialization Vector. Trivium block 

receives five signals and generates one, which is the cipher output bit. 

 

 

 
Figure 7. RTL schematic of LCG-Trivium 

 

 

4.2. Behavior Simulations 

Figure 8 to Figure 11 depict the results of behavior simulation of the design LCG-Trivium. Figure 8 

shows the behavior of main signals of the design circuit in the Reset and Initialization phases. At the 

beginning of the Reset phase, only key, seed, increment and multiplier signals have known values while other 

are unknown, the key stream signal is at high impedance and reset signal is HIGH. When the reset signal 

goes to LOW, then at the next rising edge of clock signal, the LCG block generates the first random number 

and that number is the IV signal. With this, the system moves to the Initialization state. RR signal goes LOW, 

LL signal goes HIGH, BO goes LOW, the key stream signal remain to HIGH impedance and WE goes HIGH 

then the initial values are loaded into the registers of Trivium at the next rising edge of clock signal and the 

system moves to next state which is warm-up. Figure 9 shows the behavior of main signals in the warm-up 

phase. Here the key stream signal remain at HIGH impedance. Figure 10 shows the system in the encryption 

phase. Cipher output is generated every times clock goes HIGH. A new value of IV is also generated every 

times WE signal goes LOW. Figure 11 shows the randomizing of the cipher during the warm-up phase.  
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Figure 8. Simulation result of LCG-Trivium in reset and initialization phase 

 

 

 
 

Figure 9. Simulation result of LCG-Trivium in warm-up phase 

 

 

 
 

Figure 10. Simulation result of LCG-Trivium in encryption phase 
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Figure 11. Simulation result of Trivium register’s in warm-up phase 

 

 

4.3. Synthesis Results 
Some important data after synthesis step of the proposed LCG-Trivium design circuit into cyclone 

IV-E EP4CE115F29C7N chip are summarized as shown in Table 2. From the Flow Summary report, it can 

be seen that the LCG-Trivium circuit Figure 5 required 563 logic elements, 491 combinational functions, 301 

dedicated logic registers, 95 memory bits and 9 embedded multiplier 9-bit elements. From the report paths, 

one path is found with the longest delay of 13.420 ns. 

 

 

Table 2. Flow Summary Report 
Flow Summary Report 

Total logic element 563/114,480 < 1% 

Total combinational functions 491/114,480 < 1% 
Dedicated logic registers 301/114,480 < 1% 

Total pins 3/529 < 1% 

Total memory bits 95/3,981,312 < 1% 
Embedded Multiplier 9-bit elements 9/532 < 2% 

Total PLLs 0/4 < 0% 

 

 

5. CONCLUSION 

FPGA implementation of LCG-Trivium has been designed and implemented on cyclone IV-E 

EP4CE115F29C7N chip successfully. The proposed circuit is a combination of LCG and Trivium to realize a 

stream cipher for cryptographic applications. A state machine has designed to add to the system in 

the objective to coordinate the functioning of the two block. LCG circuit generates random numbers after 

each 264 cycles of clock and it is load into Trivium, while Trivium generates key stream for each clock cycle 

in the encryption phase as the ModelSim simulation depicts. With this, the cipher complexity is improved. 

The quartus simulation shows that, the area utilization is optimum. Based on the longest delay path, 

the designed circuit can run at a maximum frequency of 75 MHz. 
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