
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 8, No. 2, July 2019, pp. 86~98

ISSN: 2089-4864, DOI: 10.11591/ijres.v8.i2.pp86-98 86

Journal homepage: http://iaescore.com/journals/index.php/IJRES

Integration testing based on indirect interaction for

embedded system

Muhammad Iqbal Hossain
1
, Woo Jin Lee

2

1Department of Computer Science and Engineering, BRAC University, Bangladesh
2School of CSE, Kyungpook National University, South Korea

Article Info ABSTRACT

Article history:

Received Jan 22, 2019

Revised Mar 29, 2019

Accepted Apr 20, 2019

 Embedded systems comprise several modules that exchange data by

interacting among themselves. Exchanging wrong resource data among

modules may lead to execution errors or anomalies. Interacting resources

produce dependencies between two modules where any change of resources

by one module affects the functionality of another module. Several

investigations of the embedded system such as aerospace or automobile

system show interaction faults between modules are one of the major cause

of critical software failures. Therefore, interaction testing is an essential

phase to reduce the interaction faults and minimize the risk. The direct and

indirect interaction between modules generates interaction faults where

indirect interaction is made underneath the interface in which data

dependence relationship with resources may cause a different outcome. We

investigate errors based on the indirect interaction between modules and

introduce a new test criterion for finding errors detectable by existing

approaches in unit level but not in integration level. In this paper, we propose

a noble approach to generate an interaction model using indirect interaction

pattern and design test criteria based on different interaction errors to

generate test cases. Finally, we use fault injection and data flow coverage

techniques to evaluate the feasibility and effectiveness of our approach.

Keywords:

Embedded system

Fault injection

Indirect interaction

Integration testing

Copyright © 2019 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Muhammad Iqbal Hossain,

Department of Computer Science and Engineering,

66 Mohakhali, BRAC University, Dhaka, Bangladesh.

Email: Iqbal.hossain@bracu.ac.bd

1. INTRODUCTION

Embedded systems have permeated in every aspect of our everyday life. From complex safety-

critical systems like automobile, medical system to home appliances, cellular phones even toothbrushes is

controlled by embedded software. So embedded system testing became a serious concern in the product

development lifecycle. A study dispatched by the National Institute of Standards and Technology (NIST)

found that every year software errors cost the US economy $59.5 billion. It is estimated that around $22.2

billion, could be eradicated by improving test techniques [1]. Unlike the systems of other domains, an

embedded system is a combination of sensors, actuators, processors with massive deployment and exhaustive

interaction with the environment and resources. Also, the procedure is complex and changes to software

interfaces and hardware are common, which makes testing challenging. A number of investigations of

aerospace problems show functional interactions among components and inadequate specifications causes

serious software failures in aerospace missions. Lutz examined 387 software errors uncovered during

integration and system testing of the Voyager and Galileo spacecraft [2]. In 1997, an error was introduced

during the evolution of the Minimum Safe Altitude Warning software system (MSAW) where an aircraft

crashed at the Guam International Airport [3].

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Integration testing based on indirect interaction for embedded system (Muhammad Iqbal Hossain)

87

In hazardous sectors, embedded systems need an exhaustive testing process. First of all, each

software module is tested distinctly as a unit and then combined to proceed with integration testing.

The integration testing has the goal of demonstrating whether developed features work together well enough

for the software to submit for system testing. When joining all modules together, errors can emerge from

their interactions. There can be direct and indirect interaction between modules and depend on these

interaction types, execution paths are generated which ultimately covered by test cases. Therefore, all

execution paths are needed to be tested to detect interaction faults. It is not possible to test all paths and till

now there is a lack of standard pattern and model for representing indirect interaction and generating test

cases. So, a new approach is proposed here for generating an interaction model for representing direct and

indirect interaction and test paths are generated for covering indirect interaction of resources.

Embedded system comprises several modules and these separated modules exchange resource data

by interacting among themselves. These resource data can flow across software layers between modules

within layers. As a result, any changes in resources by one module affects the functionality of another

module. Therefore, interaction testing is a vital phase to decrease the interaction faults and to minimize the

risk. Interaction faults are generated by the direct and indirect interaction between modules where the direct

interaction is made through interfaces and the indirect interaction is made underneath of interface in which

data dependence relationship with resources may cause a different outcome. For example, A module calls B

and C modules in its body then test cases must cover all relation between A-B and A-C. But there can be

other interactions between module B and C. It is very difficult to test all interactions among them. So the

proposed approach is designed to cover only those interaction which is done by resources. This type of

interaction is called indirect interaction. There are several cases for the indirect direction that can be done by

resources like a shared variable, file, database, device etc. which are described in details in the later part of

this paper.

For generating test cases, many existing approaches use black/white box testing technique to find

the interaction between two modules by the interface or prototype of the module. This technique can only be

applicable for the unit level, not in integration level. Indirect interaction is indistinct for embedded system

and still, there is no standard model for addressing this issue. As a result, existing approaches do not consider

this interaction while generating test cases. It can produce errors by exchanging wrong resource data and may

lead to critical errors or anomalies. It is very difficult to test every interaction among modules of the

embedded system so a compact test suite is customized that assurances to resolve a subset of interaction.

In this paper, a noble approach is proposed to generate an interaction model using indirect interaction pattern

and then design test criteria based on different interaction errors for generating test cases. A brand new aspect

of white box testing is proposed which takes account of indirect interaction while generating test cases.

Several kinds of indirect interaction are investigated that causes errors through shared resources, file, device,

database etc. denoted as interacting variable throughout this paper. For data flow based technique,

D-U (Definition-Use)/W-R (Write-Read)/R-T (Receive-Transmit)/I-D (Insert-Delete) as represented as

“interaction chain” of the interacting variable, are produced by analyzing the source code and generate test

paths according to the sequence of the interacting modules. Interacting variables propagate between modules

without parameter or return value and produce an indirect dependency not having any information in the

declaration. The key contributions of this paper are:

a. Present a new type of model to represent the indirect interaction between the modules which are called

interaction model. It represents how the modules of the system interact among themselves.

b. Specifies the abnormal indirect resource interaction pattern and categorize different fault types.

c. Test cases are generated by symbolic execution to cover the indirect interaction between resources.

d. Case studies show that the proposed approach is very effective for detecting indirect interaction

related faults.

2. RELATED WORK

Related work is divided into two segments. At first, related work on path-based integration testing

based on the indirect interaction of modules is discussed and then present several fault injection techniques

for finding indirect interaction errors. There are few works on integration testing of the embedded system,

which consider the internal behavior of the system but lacks a standard model. Most of the existing

integration testing methods such as Genetic algorithm method, coupling based method, decision table

method, variable strength array, verification pattern etc. define test cases from software specifications and do

not consider internal execution paths of integrated modules for detecting function interaction faults.

A Coupling-based testing technique is proposed here [4] that requires the program execute from

definitions of actual parameters through calls to uses of the formal parameters. Coupling based test paths are

generated to cover last-def-before-calls, first-use-in-callee, last-def-before-return etc. They described three

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 86 – 98

88

kinds of coupling paths as parameter coupling path, shared data coupling path, and external device coupling

path. Mostly the test focus is on parameter coupling and uses Mistix program, a UNIX file system, as a case

study which does not have any call, stamp data/control, or external coupling also it is unknown how the

technique will behave in more complex systems. 21 faults are inserted into Mistix, which does not reflect the

integration/interaction relationship of modules. This survey paper in [5] identifies one of the major

challenges in integration testing in component-based software engineering is identifying the dependencies.

The author investigates how to observe the system’s dynamic behavior in component integration testing.

Here components are treated as a black box and observe their interrelationship by statements, execution

sequence, glued parameter etc. Here, only basic interaction is observed and their method cannot find the

indirect interaction among components. The contribution of this paper [6] is one of the foundations of

integration testing using white box approach. Later many researchers use this concept to develop their own

techniques. Here errors are classified into domain error and computational error. A domain error occurs when

a specific input follows the wrong path due to an error in the control flow of the program and a computation

error exists when a specific input follows the correct path, but an error in some assignment statement causes

the wrong function to be computed for one or more of the output variables. Their experience has shown that

for most modules it is not possible to detect all the integration errors, even when all paths in the module are

examined. Furthermore, they showed that these errors could be detected by examining the normal outputs of

the subsystem, without requiring intermediate values or extraneous quantities to be examined. However, for

indirect interaction, it is necessary to examine the intermediate value of the variable. Also, the number of

paths is quite high and they suggest that a reduction in the number of the path should be examined. A study is

done to solve the problem of building test suites for software interaction testing [7]. They have developed a

model for the variable strength covering array and have provided some initial bounds and methods for

constructing these. It is also shown that this type of model to gain a stronger interaction test suite without

increasing the number of test configurations. They use greedy algorithms to make a decision on how to select

components for interaction while the goal of testing is to cover as many component interactions as possible.

They did not take into account the internal structure of the components and how resources can create

interaction between two components. A verification pattern-based approach is developed to generate test

scripts quickly for an embedded system [8]. The VP approach classifies system scenarios into patterns. For

each scenario pattern (SP), the test engineer can develop a script template to test all the scenarios that belong

to the same pattern. But the verification framework is a functional testing framework because it is

requirements-driven. So it does not consider the internal behavior of the system. Also, the operational

scenarios are generated from the requirements and firmly depends on the engineer’s experience.

Fault injection/Mutation-based technique is used to evaluate a test approach. Many researchers

discussed several faults that can be generated during integration testing but none of them are related to

indirect interaction faults. An integration error occurs when an incorrect value is passed through a unit

connection in [9]. They illustrated how incorrect values entering and exiting a unit call and causes erroneous

output. Here, only the actual parameter, global variable, and return value are considered. One of its weakness

is that it is a mutation operator based technique and imposes a higher cost at every location in the program

where the global variable used/defined is a potential location for mutation. This paper introduces an

improved, simple and easy technique of interface faults insertion using AspectJ for Java component-based

applications [10]. The technique can ignore the entire execution of an interface service, corrupting its input

values and returning a bogus return value. The faults are focused on the interface that can be invoked in

different ways and would lead to different event executions. Also, there is no control over when the fault

should be triggered because faults are triggered by the program itself, whenever the program calls the

interface services. This work is to propose a fault injection strategy to test the interaction among

components [11]. For that reason, interface faults are introduced by corrupting input data as well as interface

output data. However, almost every case researcher focuses on interface information and generate faults

according to the input and output of the module. However, erroneous or incomplete interface specifications

may lead to futile faults. We need special faults that occur during interaction among modules, which could

not be found by analyzing the interface information.

3. INDIRECT INTERACTION

Embedded systems encompass a broad range of hardware and software systems where the software

system is divided into several modules, which are developed by several vendors or different developer teams.

An interaction takes place when two or more modules have a calling relationship among them and accessing

the same resources from several modules. Although some researchers use the same term to classify feature

interaction, human-computer interaction, interaction testing etc. which is quite distinct from our work.

For example, the interaction testing focused on how components interact with each other by changing the

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Integration testing based on indirect interaction for embedded system (Muhammad Iqbal Hossain)

89

combination of components. Suppose there are four components, each with three different values, resulting

in 81 possible system configurations. Each of the system tests must be run in each of these 81 configurations

in order to detect any unexpected interaction faults that will occur between components. A feature interaction

is a situation in which two or more features exhibit unexpected behavior that does not occur when the

features are used in isolation. Several approaches can be used to implement features cohesively in order to be

able to compose them in different combinations [12].

According to the interaction relation, we divide them into direct and indirect interaction.

Direct interaction is the explicit call relation between modules where callee module provides all input,

output, and other reference information to the caller module. On the other hand, in indirect interaction,

reference or resource sharing information is not present in the module interface but accessed inside the body

of the module where possible errors can occur. For example, in the embedded system shared variable, file,

external device etc. are used extensively inside a module where caller module has no information about

those. As a result, there creates an indirect interaction between two modules which access that particular

resource or reference separately. Any change or error in that resource affects all the accessing modules and

may open a path for unauthorized access to the resource. The main difference between integration testing and

interaction testing is that in integration testing, data transactions are visible such as parameter (variable, file,

memory) return value etc. but in interaction testing, data transactions are not visible from the abstract

view of the system.

3.1. Abnormal scenarios by indirect interaction

Four basic types of interactions are identified, which are designated as test adequacy criteria, causes

indirect interaction (IDI) error. Each of the types is described in detail here.

IDI by shared variable: In an embedded system, especially in the interrupt service routine (ISR),

memory management unit (MMU), task management unit (TMU) etc. use shared variables to communicate

among them and related modules. Shared variables make data available from one module to another or

among multiple processes, but have no call relation. It is very difficult to identify this interaction because

shared data information is not present in the module declaration. It can easily be defined and used in several

modules. Any error or change of shared variables in one module affects another module. Therefore, it is

essential to trace shared variables and confirm their correctness. The value of a shared variable while exiting

the first module and after entering the second module needs to be compared to avoid value or type mismatch.

It is done to make sure that there is no intermediate modification of the value. We use data flow based testing

techniques to find all definition and use information of a shared variable and generated test paths. Any faults

in data flow will be resolved by it. For example, Figure 1 shows the shared variable in elevator system where

service_cntr is a shared variable defined and used in check_and_set_dnu and dispatch_pending_elv modules.

IDI by File: Many embedded systems have a block of non-volatile RAM of which the kernel can

maintain no memory page descriptor to mount a read/write filesystem. In addition, some embedded OSs

provide memory management support for a temporary or permanent file system storage scheme. Usually,

files are used to get input into a program or to display/store data from a program. MMU processes a file for

temporal/permanent storage of data, which can be read, write or append by several modules. A module can

open a file anywhere in its body and perform required actions without passing file information through the

parameter of a module interface. Therefore, the tester does not test how files are used inside modules.

However, it is very important to test how the files are being used or whether the files are performing

according to specification. While interacting, it is needed to test whether two modules follow that same file

structure or not. For example, a file may contain an integer value instead of a floating number.

Figure 1. Indirect interaction by Shared variable

So, while reading an integer value from a file, although the file contains a float value, produces an

error. There can be cases where the file system is empty or a file is not present in a directory. For this reason,

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 86 – 98

90

these abnormal cases during interaction should be tested. For example, Figure 2 represents indirect

interaction using the file in a project called “simulating a preprocessor using file”. Here dataStr.c file is read

in output module and write in comment module.

Figure 2. Indirect interaction by file

IDI by I/O device: Embedded systems contain extensive applications running on different devices

and these are used to receive data into a program or to transmit output data from a program. For example, in

microwave oven system, the door sensor and heating elements interact with its software system and execute

according to their operations. This device corresponds to a real-world physical object that interacts with the

system via sensors and actuator. A module can enable any sensors and actuator anywhere in its body and

perform required actions. It is not needed to pass device information through parameters. Therefore, the tester

does not test how devices are handled inside modules. However, it is very important to test how the devices

are being used or whether the devices are performing according to specification. A device may have wrong

state, timing failure, fault handling etc., which may lead to critical errors during interaction.

For example, Figure 3 represents indirect interaction using the level sensor in a water level

monitoring system. Here, level sensor continuously reads the water level to start/stop the motor and in

particular level, it triggers an alarm.

Figure 3. Indirect interaction by device

IDI by database: Embedded systems often need to use the database for storing configuration data,

init data, trace data, error log data etc. Whenever a certain action is performed in on the module of an

application, a corresponding CRUD (Create, Retrieve, Update and delete) action gets invoked. Another

module may perform another action. So we need to test the data integrity. This means that following any of

the CRUD operations, the updated and most recent values/Status should appear in another module. When a

certain event takes places on a certain table in a module, a trigger can be auto instructed to be executed on

another table. Some other event may take place at the later table in another module. As a result, an event in

one module can indirectly affect another module. For example, in Figure 4 a module inserts purchase orders,

and the product is removed or updated by another module, future events will have to fail.

Figure 4. Indirect interaction by database

Output

Comment

main dataStr.c

motor

Alarm

Controller Level sensor

OrderProduct

removeProduct

 tbl_product purchase

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Integration testing based on indirect interaction for embedded system (Muhammad Iqbal Hossain)

91

3.2. Formal model for indirect interaction

Modular interaction is done by the clearly well-defined interface through parameter or return value

and most of the existing works focused on faulty message/data passing through modules. The functional

interface contains the required information to interact with another module. Most of the time interfaces are

poorly documented and only contain information related to direct interaction, not an indirect one. Finding

indirect interaction is complicated for deficiency of standard pattern and model. An indirect interaction is

pictured as the exchange of resources among modules, and resources usually shared between modules

indirectly through Files, shared variables, I/O devices, where any changes to a resource by one module may

affect another module. An indirect interaction is represented by the interaction model generated by extending

call graph in Figure 5.

Figure 5. Sample interaction model

An indirect interaction is described as a hidden dependency between two modules through several

kinds of resources where any change in one resource by a module affects the behavior of another module. At

first, a call graph is generated automatically using the static analyzing tool and then find the indirect

interaction between modules. Figure 5 represents module C and module B have an indirect interaction by the

shared variable, module B, and module A has a call relation, module F and module E have indirect

interaction through a file etc. The directed edges represent the calling sequences of the modules. Indirect

interaction can be formally defined as follows,

Definition 2: Interaction model can be represented as G=(V, E); where V comprises finite set of

modules and E contains a set of interactions, E ⊆ V × V. Solid edges represent call relation and dashed

edges represent indirect interaction where indirect interaction is the set of {Shared variable, File, Device,

and database} and directed edges represent the calling sequences of V.

The proposed IDI approach comprises two phases. First phase interacting variables are found

between two modules by generating an interaction model and define some new criteria where error may lie.

In the second phase, test cases are generated efficiently for solving or preventing those errors. A tester should

take account those new test criteria while generating test cases.

4. PROPOSED INDIRECT INTERACTION (IDI) BASED APPROACH

The proposed IDI approach comprises two phases. In the first phase, we find interacting variables

between two modules by generating an interaction model and define some new criteria where the error may

lie. In the second phase, test cases are generated efficiently for solving or preventing those errors. A tester

should take account those new test criteria while generating test cases.

4.1. Interaction model generation

To generate an interaction model, as shown in Figure 6, Understand tools is used to parse the source

code and then maintained in a database to store information dynamically for generating a call graph.

Understand is used to analyzing the source code which understands and maintain large amounts of newly

created source code. The IDE provides multi-language, maintenance-oriented, cross-platform features [13].

It has architectural features that support to produce hierarchical accumulations for units of source code.

These units can be named and handle in various ways for further analysis such as control flow graph

generation, call graph generation, locating declaration files, finding cluster calls etc.

Module

<<resource>>

Call relation

Indirect interaction

Shared variable, File

I/O device, database

Module A

Module B

Module C

Module D

Module E

Module F

Module G

S
h

ared

F
ile

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 86 – 98

92

Figure 6. Overview of generating Interaction model

A list of the caller-callee relationship between two modules is acquired by generating a call graph as

modules and arcs. Extraction of the interacting variable is a semi-automatic process, which can be done by

the developer or tester by analyzing source code. Many techniques use interface information to find the

interaction, which can be erroneous or incomplete, and several works have already done testing this kind of

interaction. Here the focus is on the resources accessed by two modules inside their body, which are not

present in interface information. As discussed in section 3 that there are several kinds of indirect interaction

that causes fault. It needs to find the following relation between the two modules:

• Same global variable defined or used.

• Same file open for read/write operation.

• Same device connected for receiving/transmitting signal.

• Same database access and perform query.

As a result, shared variable, file, device or database are found which are denoted as an interacting

variable and their corresponding modules. The interaction model is generated by combining all the

information. A flowchart of finding an interacting shared resource for generating interaction model is shown

in Figure 7.

Figure 7. Flowchart to find Interacting shared resources

4.2. Generation of test case

In the second phase, based on the designed test template along with test adequacy criteria, test paths

are generated for each indirect interaction. The white box testing approach provides a variety of test

adequacy criteria such as a statement, branch or definition-use coverage. Our test adequacy criterion for three

types of indirect interactions which are is already defined in section 3.

Source code

“Understand” static analyzer
Gather information from source code

Interacting

variable

Extended

call graph

Interaction model generation

Source code

Analyzed by Understand

Interacting Shared

resource

Shared variable File, device, DB

Represents in which modules it

is define, use, init etc.

Represents call graph as

butterfly view

Search in source code

Search by basic keywords like

fopen, open, mysql_quere etc.

Same item

Found?

Represents in which

modules it is accessed

Store information

Store information

Store information

Interaction

model

Call information

View information

View information

Y

N

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Integration testing based on indirect interaction for embedded system (Muhammad Iqbal Hossain)

93

A test template is a basic overview of how test case generation procedure will proceed. A basic test

template for interaction test path generation is given below where we use an elevator system as running

example depicted in Figure 8. In elevator system, decision_algo decides which lifts to service which all

requests, check_and_set_dnu checks which all lifts are servicing full requests and update their DNU status

and add_service_request sets service level as requested.

Figure 8. Running example of teaching the assistant system

Here, decision_algo have direct call relation with check_and_set_dnu and add_service_request. On

the other hand, check_and_set_dnu and add_service_request module have shared variable service_cntr.

Step 1: Interaction model represents entire call information between modules of the system. From

this model, two modules (leaf node) are identified which have indirect interaction and what type of

interaction is present there. In the example, service_cntr is an interacting defined and used in

check_and_set_dnu and add_service_request modules.

Step 2: After finding the modules which are interacting with them, it is needed to travel back to

their parent node until there is a common ancestor. Here, the same interaction model is used where modules

represented as nodes and interactions are represented as edges. At the end of this step, all traversal

information is collected and create sub-tree where leaf nodes are interacting modules and there present a

common root for them. Here, both check_and_set_dnu and add_service_request have a common root node

decision_algo.

Step 3: In this step, the proper sequence of calling modules are generated from an ancestor node to a

leaf node as represented in the sub-tree with control flow information. Usually, control flow uses to find the

order in which module calls for an imperative program are executed. From program source code, control flow

information is collected and find all sequences until each node visits from an ancestor. The sequence for the

example is:
Step 4: In the final step, first, interaction paths are generated using function call sequence. A test

path is a sequence from the starting node to a terminal node of the control flow graph of a program and

contains several paths for covering each module sequence. Secondly, from interaction type, which is found in

step 1, test criteria is implemented and produce interaction chain. The chain represented as a series of nodes

where the interacting variable is defined/used, read/write, transmit/receive or insert/delete. Only those paths

are selected that are feasible by the chain and set injection point here. Proposed test path generation tool does

test path selection procedure automatically. After that, test cases are generated by symbolic execution

technique for executing those test paths. In the example, service_cntr is the interacting variable and its DU

chain is as follows.

𝐷𝑈 ℎ : 87 184

All the paths are generated according to module sequence and only those paths are feasible which

are covered by DU chain. Some partial feasible paths (sequence of node number) are given below:

1. 203 204 205 84 85 86 87 95 96 97 98 206 207 208 209 210 211 212 213 214 176 177 178 179

180 181 182 183 184 185 187 188 190 191 192 193 215 216 217 218 223 224 225 230 231 232

2. 203 204 205 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 206 207 208 209 210 211 212 213

214 176 177 178 179 180 181 182 183 184 185 186 187 188 190 191 192 193 215 216 217 218 223 224 225

230 231 232

3. 203 204 205 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 206 207 208 209 210 211 212 213

214 176 177 178 179 180 181 182 183 184 185 187 188 190 191 192 193 215 216 217 218 219 220 221 222

223 224 225 226 227 228 229 230 231 232

For each of these test paths, test cases are generated by symbolic execution technique. For example,

we solve the first test path with symbolic execution and get the following path condition as shown in Table 1.

Decision_algo

add_service_request

check_and_set_dnu

 _

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 86 – 98

94

Table 1. Evaluating predicate condition for generating test cases
Serial I MAX_LIFTS SERVICE_CNTR DIR_UP I2 MAX_REQUESTS DIR_IDLE DIR_DOWN Result

1 7 2 92 2 7 15 0 2 fail

2 1 2 1 1 3 15 2 0 pass
3 2 2 84 1 3 15 1 0 fail

4 0 2 61 1 3 15 2 2 fail

(I<MAX_LIFTS) && (SERVICE_CNTR>=3) && (CUR_PROC_INP == DIR_UP) &&

(I2<MAX_REQUESTs) && (ELV_SERVICE_DIR !=DIR_IDLE) && (ELV_SERVICE_DIR==

DIR_DOWN)

An algorithm is designed which randomly select input condition and execute with the path

condition. Path condition contains the interacting variable along with other internal variables. If the path

condition is satisfied then it is treated as a test input. As represented in Table 1, number 2 input condition

fulfill the path condition, so it is a test case for that particular test path. Similarly, for all test paths, we

generate the path condition and by evaluating it we get the test case. However, generation of test cases using

symbolic execution is not covered here. Symbolic execution technique is well-understood, straightforward

technique and many works already have published in many research journal [14, 15].

4.3. Fault injection technique

Fault injection technique is described as a deliberate injection of a fault into a running system during

a test activity, to determine whether the system reacts well to off-nominal or exceptional conditions [16, 17].

Faults that injected into the system represent the actual faults that occur within the system. A tester creates a

list of faults and injects those faults into the system. The final report sent to the developer to correct the code

so that faults can be handled correctly. To inject fault in the source code, it needs to modify the code, add

new code or delete part of the code. Figure 9 show the fault injection process is divided in,

1. Pre-injection analysis

2. Inject actual fault

Figure 9. Overview of fault injection technique

The pre-injection analysis involves creating the fault according to test criteria. Test criteria are based

on the behavior of interacting variables, software design, and experience of a tester. A tester should have

proper knowledge of the source code and a clear idea of where and how the fault can take place. After that,

we inject the fault into the system and execute it. A tester observes the behavior of the system and compares

with previous output. Faults have so many varieties that we cannot study every kind of their impact on

software [18]. We select most relevant faults which may produce by indirect interaction and the list of faults

is given in Table 2.

Fault injection technique is used to evaluate the proposed approach by finding the fault detection rate. The

overview of the technique is given in Figure 9 and the steps are given below:

- Step 1: Like data flow based criteria, we generate interaction type and interacting modules from the

interaction model.

- Step 2: According to the type of interaction, we select possible faults from the fault list. As we have

already discussed that faults generated by indirect interaction, which is not studied yet. There are some

existing works, discussed in related works, but does not contain the standard model or representation. We

have analyzed indirect interaction and make a list of errors, which can produce during run-time in the

previous section.

- Step 3: One of the important parts is finding the injection point. We analyze the interacting module and

find execution paths in where injected fault will be executed. It is of no use if the fault is not triggered during

execution.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Integration testing based on indirect interaction for embedded system (Muhammad Iqbal Hossain)

95

- Step 4: Then we inject the fault into the system and run the program and observe the output/behavior of

the system for activation of the fault. This fault activation process is done by our proposed approach and

random fault activation technique and compares the fault activation rate for evaluation.

Table 2. Different faults by the interaction of resources
Type Criteria

Shared Variable Shared Variable exceed boundary value in one module

Last value of first module is not equal to first value of second module
Use definition use criteria for testing (DU testing)

File File Removed in between two modules
File data mi smatch between modules

Required value is not present in file

Garbage value handling
Device Interacting device not found

Wrong device connected

Wrong data receive/transmit from device from another module
Device is in wrong state while interacting

Timeout between modular interaction

Database Read data from empty table where data deleted by other module
Write data to table which is altered by other module

Top most data required but deleted by another module

5. CASE STUDY AND EVALUATION

Several case studies are performed on how to generate test cases for shared resource and timing

constraints for indirect interaction. For shared resource based indirect interaction, number of test cases for

covering all DU and indirectly interacting DU is compared. Also, for evaluating the fault detection rate,

between the proposed approach and call based approach, fault injection technique can be used.

5.1. Comparison of number of test cases for DU coverage

In the first evaluation criteria, the required number of test cases are computed for covering all DU

and interaction variable DU. All DU coverage means all definition-clear path for all the variables in that

interaction. The number of paths is too high for the mid-level program and for the large system there will

occur state explosion problem. It is not efficient to compute a large number of test cases which increase

testing cost and time at a high rate. So focusing on indirectly interacting variable DU only to reduce the

overhead for generating test case.

Table 3 represents the comparison between number of test cases required for all DU coverage and

all interacting variable DU coverage. As shown in the first case, the number of test cases required for

covering all DU is 3192 where the number of test case required for covering interacting variable DU

coverage is 324 which is comparatively lower and realistic than all DU coverage. Also, it covers 10.15% of

all DU coverage

Table 3. Comparison between numbers of test cases required for all DU

and all interacting variable DU coverage

System

Number of test cases

Coverage
All DU

Interacting

DU

3192 324 10.15%

2880 576 20.00%

4376 1240 28.34%

126 32 25.4%

decision_algo

check_and_set_dnu

add_service_request

serivce_cntr

main

dispatch_pending_elv

decision_algo add_service_request

elevators.id, current_proc_input

serivce_cntr

main

dispatch_pending_elv

decision_algo check_and_set_dnu

lift1, lift2

serivce_cntr

find_css_set

find_css_set

link_css_set

tmp_links

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 86 – 98

96

5.2. Evaluating through fault detection rate

To evaluate the proposed approach, the fault detection rate is computed for several systems. At first,

the list of faults is specified which occur in the direct and indirect interacting. For direct interaction related

fault, most general kind of faults are listed according to IEEE standard Classification for software anomalies

- IEEE std 1044-2009 and IEEE Standard for Software and System Test Documentation-IEEE Std 829-2008

[19, 20]. Indirect interaction faults are designed by analyzing the behavior of the resources. All the inserted

faults are shown in Table 4.

For each resource, both direct and indirect interaction faults are inserted and analyze how faults are

detected by the call based approach and proposed approach. In call-based approach, test cases are generated

covering all parameter and return value as stated in the interface. The interface does not contain any indirect

interaction information so it is expected that faults generated by indirect interaction wouldn’t detect here.

On the other hand, the proposed approach has both interface and indirect interaction information so it should

detect all possible indirect interaction errors. A comparison between numbers of direct and indirect faults

detected by the call based approach and proposed approach is shown in Figure 10. Considering only student

information system, total 44 faults (direct interaction faults 35, indirect interaction faults 9) are injected.

Call-based approach only detects 33 direct interaction faults and none of the indirect interaction fault. The

proposed approach detects 27 faults which contain 18 direct interaction fault and 9 indirect interaction faults.

Table 4. List of inserted faults for direct and indirect interaction
Resaurces Fault type Fault description

Shared variable Direct interaction A parameter in a function call was missing
 In complete expression was used as parameter

 Wrong information was passed to a function call (Value, expression result. Etc)

 Indirect interaction Shared variable exceed boundary value in one module
 Last value of first module is not equal to first value of second module

File Direct interaction No input file in present in directory

 Wrong file name
 Invalid parameter while opening the file

 Indirect Interaction File removed in between two modules

 Required valueis not present in file
 Garbage value handling

Database Direct interaction Modify SQL statement

 Modify database connection information
 Lost database connection

 Modify column information in query

 Indirect Interaction Read data from empty table where data deleted by other module
 Write data to table which is altered by other module

 Top most data required but deleted by another module

Figure 10. Comparison of the number of direct and indirect interaction fault detection

As shown in Table 5, total 80 faults are injected in the source code in several systems where 59 of

them are direct interaction faults and 21 indirect interaction faults. As expected, call based approach did not

detectany faults generated by indirect interaction. It only detects 49 faults which are direct interaction faults.

The proposed approach detects 21 indirect interaction faults along with 29 direct interaction faults.

Int J Reconfigurable & Embedded Syst ISSN: 2089-4864

Integration testing based on indirect interaction for embedded system (Muhammad Iqbal Hossain)

97

The proposed approach detects 100% indirect interaction fault in every case and in addition it also

detects direct interaction fault. For example, for the stdInfo system, call based approach detect 94.29% direct

interaction fault and none of indirect interaction fault. The proposed approach detects 100% indirect

interaction faults along with 51.43% direct interaction fault. The result clearly shows how efficiently the

proposed approach detects indirect interaction faults.

Table 5. Fault detection by call based and proposed approach
System Inserted faults Faults detected by call based approach Faults detected by call based approach

 DI faults IDI faults Total DI faults IDI faults Total DI faults IDI faults Total

StdInfo 35 9 44 33

(94.29%)

0 33

(75%)

18

(51.43%)

9

(100%)

27

(61.36%)
TellBill 16 9 25 10

(62.29%)

0 10

(40%)

9

(56.25%)

9

(100%)

18

(72%)

shopCart 8 3 11 6
(72.00%)

0 6
(54.55%)

2
(25%)

3
(100%)

5
(45.45%)

Total 59 21 80 49

(83.05%)

0 49

(61.25%)

29

(49.15%)

21

(100%)

50

(62.50%)

6. CONCLUSION AND FUTURE WORK
The paper presents a general specification of an interaction model including the indirect interaction

between modules of the embedded system and proposes test adequacy criteria which can be included with

data flow driven integration testing approach to generate test cases efficiently. Also, a fault injection

technique is used to test the fault tolerance system based on indirect interaction error.

In our research, we identified different indirect interactions that are considered specifying an

interaction model and then designed test criteria for each type of interaction. Using data flow analysis by the

specialized tool, the source code is parsed to collect required information and this information is used for

generating an interaction model. Using several techniques interaction model is break down into sub-trees and

find a common ancestor for each of the interacting modules. Using the sub-tree and control flow information

of the source code, module sequence from ancestor to leaf node is generated. From the module sequence, the

number of interaction paths is generated and compared with the tests created based on the test criteria. Those

paths, that are feasible by designated test, are selected according to the DWRI-URTD chain of the interacting

variable. After that, symbolic execution technique is used to generate test cases for each of the test path. On

the other hand, some faults are listed according to different indirect interaction and those faults are injected

into the source code and execute the program. The output of the original program is compared to the output

generated after fault injection. If the outputs are the same, either then the test case is not adequate, or the

program is unable to identify the fault. To show the feasibility and effectiveness of the proposed approach,

some case studies are done and conducted qualitative experiments on several systems. The result indicates

that there is a huge necessity to test indirect interaction while performing integration testing.

In future work, we are planning to implement our test technique as a tool suite to generate test data

for interacting variables between modules automatically. In addition, for generating more efficient interaction

model, we intend to undertake an in-depth study to find further interaction pattern which can be implemented

in the larger embedded system.

REFERENCES
[1] N. US Department of Commerce, “Updated NIST Software Uses Combination Testing to Catch Bugs

Fast and Easy,” 2010.

[2] National Transportation Safety Board, “Controlled Flight into Terrain, Korean Air Flight 801, Boeing 747-300,

HL7468", Nimitz Hill, Guam, August 6, pp.212, 2000.

[3] National Transportation Safety Board, “Controlled Flight into Terrain, Korean Air Flight 801, Boeing 747-300,

HL7468, Nimitz Hill, Guam, August 6, 1997,” p. 212, 2000.

[4] Z. Jin and A. Offutt, “Coupling-based criteria for integration testing,” Softw. Test. Verify. Reliab., vol. 154, no. July,

pp. 133–154, 1998.

[5] H. Zhu and X. He, “A Methodology for Component Integration Testing,” Springer, pp. 239–269, 2005.

[6] A. Haley and S. Zweben, “Development and Application of a White Box Approach to Integration Testing,” J. Syst.

Softw., vol. 15, pp. 309–315, 1984.

[7] M. B. Cohen, “Designing test suits for software interaction testing,” The University of Auckland, 2004.

[8] W. Tsai and L. Yu, “Rapid Embedded System Testing Using Verification Patterns,” IEEE Software, vol. 22, no. 4,

pp. 68–75, 2005.

[9] Â. E. Delamaro, J. C. Maldonado, and Aditya p. Mathur, “Interface Mutation: An Approach for Integration

Testing,” IEEE Trans. Softw. Eng., vol. 27, no. 3, pp. 228–247, 2001.

 ISSN: 2089-4864

Int J Reconfigurable & Embedded Syst Vol. 8, No. 2, July 2019: 86 – 98

98

[10] N. L. Hashim, H. W. Schmidt, and S. Ramakrishnan, “Interface faults injection for component-based integration

testing,” Comput. Informatics, 2006. ICOCI ’06. Int. Conf., pp. 1–6, 2006.

[11] R. Lúcia and D. O. Moraes, “Architecture-based Strategy for Interface Fault Injection,” Work. Archit. Dependable

Syst. Int. Conf. Dependable Syst. Networks, 2004.

[12] S. Apel and K. Christian, “An Overview of Feature-Oriented Software Development,” J. object Technol., vol. 8, no.

4, pp. 1–36, 2009.

[13] “Scitools-Understand (visualize your code).” [Online]. Available: www.scitools.com.

[14] J. C. King, “Symbolic Execution and Program Testing,” Communication, vol. 19, pp. 385–394, 1976.

[15] J. Zhang, C. Xu, and X. Wang, “Path-Oriented Test Data Generation Using Symbolic Execution and Constraint

Solving Techniques,” Int. Conf. Software Eng. Form. Methods, no. 60125207, 2004.

[16] A. A. Samuel, N. Jayalal, B. Valsa, C. A. Ignatius, and J. P. Zachariah, “Software fault injection testing of the

embedded software of a satellite launch vehicle,” IEEE POTENTIALS, vol. 32, no. September, pp. 38–44, 2013.

[17] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection Techniques,” Int. Arab J. Inf. Technol., vol. 1,

no. 2, pp. 171–186, 2004.

[18] J. F. and H. Q. N. C. Kaner, “Common software errors,” in Testing Computer Software Second Edition, Dreamtech

Press, pp. 1–89, 2000.

[19] IEEE Computer Society, IEEE Standard Classification for software anomalies (IEEE std 1044-2009). 2010.

[20] IEEE Computer Society, IEEE Std 829-2008, IEEE Standard for Software and System Test Documentation, vol.

2008, no. July. 2008.

BIOGRAPHIES OF AUTHORS

Muhammad Iqbal Hossain is currently an Assistant professor in the school of computer science

and engineering at BRAC University, Bangladesh. His research interest includes embedded

software engineering particularly testing and verification.

Woo Jin Lee is currently a professor in the school of computer science and engineering at

Kyungpook National University, South Korea. He received the Ph. D. degree in Computer

Science from Korea Advanced Institute of Science and Technology in 1999. His research interest

includes embedded software testing, modeling, and verification of embedded software, and

component-based software development.

