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 Electroencephalography is refer to record the electrical signal with respect to 

brain activity and its reliable EEG information, using this to diagnosis 

disorder and tumors. However the signal is very difficult to capture and 

processing due to so many parameter. Mainly this signal is very low range 

that from 0.1 to 100μv in and its bandwidth range from 1Hz to 100 Hz. So 

the signal has amplified by using linear and accurate digital program 

amplifier (PGA). This amplifier has been designed by using First stage 

amplifier with gain of 120 dB with low output noise. The PGA is consists of 

OPAMPs the PGA change from 10 dB to 120 dB. Inorde to optimized the 

linear and gain accuracy a new structure resister array is proposed high gain 

PGA. Hence the simulated result has shown it is promising to exhibit an 

amplifier with high performance biomedical application. 
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1. INTRODUCTION  

The term medical instrument stood for simple hand-held instruments used by physicians for 

observing patients, examining organs, making simple measurements, or administering medication. These 

small instruments, such as stethoscopes, thermometers, tongue depressors, and a few surgical tools, typically 

fit into a physician’s hand bag. Today’s medical instruments are considerably more complicated and diverse, 

primarily because they incorporate electronic systems for sensing, transducing, manipulating, storing, and 

displaying data or information. Furthermore, medical specialists today request detailed and accurate 

measurements of a vast number of physiologic parameters for diagnosing illnesses and prescribe complicated 

procedures for treating these. As a result, the number of medical instruments and devices has grown from a 

few hundred a generation ago to more than 10,000 today, and the complexity of these instruments has grown 

at the same pace. The description of all these instruments and devices would fill an entire handbook by itself; 

however, due to the limited space assigned to this topic, only a selected number are described. 

This section on medical instruments and devices neither replaces a textbook on this subject nor 

presents the material in a typical textbook manner A few traditional bioinstrumentation or 

electroencephalography have been omitted entirely because most textbooks on this subject give excellent 

introductions and reviews. Transducers, biosensors, and electrodes are covered in other sections of this 

Handbook. Thus this section provides an overview, albeit an incomplete one, of recent developments in the 

field of medical instruments and devices. 

The ultimate goal is to implement a biopotential acquisition system that is comfortable and invisible 

to eye with long-term power autonomy, high signals. The aim is not only to increase the patients’ quality of 

life but also to extend device applications to sports, entertainment, comfort monitoring, and so on. 

The biosignal used for these systems must have a high input impedance, a low output impedance, a limited 
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bandwidth, and a low power consumption. Additionally it must have an adequate gain, a high power supply 

rejection ratio (PSRR), and common mode rejection ratio. The main circuit for any biopotential system is 

instrumentation amplifier. There is various ways to design instrumentation amplifier [2-6]. The primary thing 

for instrumentation amplifier is to have CMRR as high as possible to reduce the common mode signals in 

low amplitude and low frequency biopotential signal. The term instrumentation amplifier is properly used to 

describe a category of true differential input amplifiers that emphasize high common mode rejection (CMRR) 

and accuracy. Although both instrumentation amplifiers and difference amplifiers use op amps as basic 

architectural building blocks, they are distinctly different from their op amp cousins. In order to ease the 

dynamic range requirement of ADC, a PGA is placed in front of ADC. The decoder adjusts the output gain of 

PGA to an appropriate level which optimizes the performance of ADC. The circuit of PGA is realized in 

negative feedback i.e. a closed loop can achieve more precise gain setting and higher linearity. The gain 

control can be realized by varying the resistance of the input and feedback resistor array [7]. This paper is 

organized as follows. Part 2 describes the block diagram of proposed PGA. Part 3 presents the design 

consideration and circuit implementation. 

 

 

2. BASIC AMPLIFIER REQUIREMENTS 

The basic requirements that a biopotential amplifier has to satisfy are:  

a) The physiological process to be monitored should not be influenced in any way by the amplifier  

b) The measured signal should not be distorted  

c) The amplifier should provide the best possible separation of signal and interferences 

d) The amplifier has to offer protection of the patient from any hazard of electrical shock  

e) The amplifier itself has to be protected against damages that might result from high input voltages as they 

occur during the application of defibrillators or electrosurgical instrumentation 

The input signal to the amplifier consists of five components: the desired biopotential, undesired 

biopotentials, a power line interference signal of 60 Hz (50 Hz in some countries) and its harmonics, 

interference signals generated by the tissue/electrode interface, and noise. Proper design of the amplifier 

provides rejection of a large portion of the signal interferences. 

The line frequency interference signal shows only very small differences in amplitude and phase 

between the two measuring electrodes, causing approximately the same potential at both inputs, and thus 

appears only between the inputs and ground and is called the common mode signal. Strong rejection of the 

common mode signal is one of the most important characteristics of a good biopotential amplifier. 

The common mode rejection ratio (or CMRR) of an amplifier is defined as the ratio of the differential mode 

gain over the common mode gain. As seen in Figure 1, the rejection of the common mode signal in a 

biopotential amplifier is both a function of the amplifier CMRR and the source impedances Z1 and Z2. 

For the ideal biopotential amplifier with Z1=Z2 and infinite CMRR of the differential amplifier, the output 

voltage is the pure biological signal amplified by GD, the differential mode gain: Vout=GD·Vbiol. With 

finite CMRR, the common mode signal is not completely rejected, adding the interference term GD·Vc 

/CMRR to the output signal. Even in the case of an ideal differential amplifier with infinite CMRR, 

the common mode signal will not completely disappear unless the source impedances are equal. The common 

mode signal Vc causes currents to flow through Z1 and Z2. The related voltage drops show a difference if the 

source impedances are unequal, thus generating a differential signal at the amplifier input which, of course, is 

not rejected by the differential amplifier. With amplifier gain GD and input impedance Zin, the output 

voltage of the amplifier is: 

 

            
    
    

     (  
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The output of a real biopotential amplifier will always consist of the desired output component due 

to a differential biosignal, an undesired component due to incomplete rejection of common mode interference 

signals as a function of CMRR, and an undesired component due to source impedance unbalance allowing a 

small proportion of a common mode signal to appear as a differential signal to the amplifier. Since source 

impedance unbalances of 5,000 to 10,000 Ω, mainly caused by electrodes, are not uncommon, and sufficient 

rejection of line frequency interferences requires a minimum CMRR of 100 dB, the input impedance of the 

amplifier should be at least 109 Ω at 60 Hz to prevent source impedance unbalances from deteriorating the 

overall CMRR of the amplifier. State-of-the-art biopotential amplifiers provide a CMRR of 120 to 140 dB. 

A typical design of the various stages of a biopotential amplifier is shown in Figure 2. 

The electrodes which provide the transition between the ionic flow of currents in biological tissue and the 

electronic flow of current in the amplifier, represent a complex electrochemical system that is described 
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elsewhere in this handbook. The electrodes determine to a large extent the composition of the measured 

signal. The preamplifier represents the most critical part of the amplifier itself since it sets the stage for the 

quality of the biosignal. With proper design, the preamplifier can eliminate, or at least minimize, most of the 

signals interfering with the measurement of biopotentials. In addition to electrode potentials and 

electromagnetic interferences, noise—generated by the amplifier and the connection between biological 

source and amplifier—has to be taken into account when designing the preamplifier. The total source 

resistance Rs, including the resistance of the biological source and all transition resistances between signal 

source and amplifier input, causes thermal voltage noise with a root mean square (rms) value: 

 

     √                
 

where k=Boltzmann constant, T=absolute temperature, Rs=resistance in Ω, and B=bandwidth in Hz. 

Additionally, there is the inherent amplifier noise. It consists of two frequency-dependent components, the 

internal voltage noise source Vn and the voltage drop across the source resistance Rs caused by an internal 

current noise generator in. The total input noise for the amplifier with a bandwidth of Bw=f2–f1 is calculated 

as the sum of its three independent components: 
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Hence eliminate all the noise signal high signal to noise ration thus require the use of very low niose 

amplifier is exhibition of voltage noise amplifier ,then using high pass and low pass filter eliminate 

interference signal from the electrode potential and preamplifier potential offset and reduce noise amplifer 

amplitude band width since the biosignal amplitude disorder or attenuated by higher sharp-cutting linear 

phase filter have to be used. due to their smooth transfer function. Separation of biosignal and interference is 

in most cases incomplete due to the overlap of their spectra. The isolation stage serves the galvanic 

decoupling of the patient from the measuring equipment and provides safety from electrical hazards. This 

stage also prevents galvanic currents from deteriorating the signal-to-noise ratio especially by preventing 

ground loops. Various principles can be used to realize the isolation stage. Analog isolation amplifiers use 

either transformer, optical, or capacitive couplers to transmit the signal through the isolation barrier. Digital 

isolation amplifiers use a voltage/frequency converter to digitize the signal before it is transmitted easily by 

optical or inductive couplers to the output frequency/voltage converter. The most important characteristics of 

an isolation amplifier are low leakage current, isolation impedance, isolation voltage (or mode) rejection 

(IMR), and maximum safe isolation voltage.  

 

 

 

 

  

Figure 1. The neural amplifier connection Figure 2. Impedance matching with amplifier 

 

 

3. ELECTRODE 

Potential difference at the cellular membrane may be in the range within 5mV and 100mV. This 

potential difference is called the resting potential resting potential inside the cell is negative comparing to the 

environment resting potential of nerve and muscle cells is typically-70mV to-85mV the exchange charge 
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carriers in electrical circuits, electrons are charge carriers–in the body, ions are charge carriers connects to the 

surface of the body (skin, mucous membranes) or on/in the organ inside the body model of the interface for 

better understanding of the interface electrode–tissue, Passive electrical characteristics of the skin-electrode 

interface strive to express by ideal electric components with intent parameters–Resistance–Capacity. This 

model can be used for measurement electrodes in limited frequency range. When a person is connected with 

electrodes for an EEG recording. The inputs to the amplifier withintrinsic impedances from electrodes/leads 

and skin, and power line displacement currents and their pathways. For our scenario CSUP is negligible. 

The amplifier is battery powered. CE1 and CE2, are parasitic capacitances, that arise due to the 

shield conductor around the differential electrodes; however, PLI coupling from CC1 and CC2 to the inner 

conductors are reduced due to this shield. Byemploying active driven shields, the parasitic capacitances CE1 

and CE2 will be minimized (detailed in part III B), thus displacement currents idC1, idC2, and idSUP are 

negligible. However, it must be noted that neglecting these displacementcurrents do not affect the common 

mode voltage (VC) derived in subsequent equations, since it is based on the total displacement current id2 as 

derived in (3). Since displacement currents flowing in and out of the body must equate: 

 

id=id1+id2 

 

where id2 is flowing from the body to the common (COMM) electrode. The current division between CISO 

and Cb is used to express id2 as follows: 

 

    
    

       

   

 

                                   where ZRLD is the impedance between the VC node and circuit 

ground. If the COMM electrode was connected to circuit ground, then: 

 

ZRLD=
      

   
 

 

The COMM electrode driven by the RLD circuit. The RLD circuit consists of an inverting amplifier with 

gain with a corner frequency set at 1.5 kHz. The RLD circuit is driven by the signal common to both the 

differential electrodes (known as the common mode voltage). By driving the COMM electrode with an 

inverted VC with gain (G+1), the effective impedance ZRLD simplifies to the final Vc is; 

 

    
    

       

          
 

 

In commonly used bio-signal measurements, such as ECG/EEG/EMG, bandwidth reduction from the RFI 

filter due to large input impedances is negligible since the required signal bandwidth is <1 kHz. In contrast, 

the signal bandwidth of EVestG recordings spans up to 10 kHz, hence will be affected by bandwidth 

reduction.Secondly, with the traditional method, CD and CC capacitors need to be in the~pF range to 

maintain high impedance at the electrode terminals, therefore large resistors (>5 kΩ) are required to realize 

the desired corner frequencies.  

The thermal noise of∼9nV pHz from a 5 kΩ resistor is clearly unacceptable for this work, since the 

stringent low noise requirements wouldn’t be achievable if the traditional RFI filter network was employed. 

With the aid of the proposed RFI filter topology the following were achieved: Large mismatched input 

impedances will have no effect on the RFI corner frequencies. It is possible to set RF at 56 Ω, that has an 

insignificantly small thermal noise 0:96 nVpHz contribution, since there is no strict restriction on the values 

CD and CC to satisfy the required RC value. The capacitances CD and CC were therefore set at 1 nF and 5.6 

nF respectively to obtain a~200 kHz cut off frequency, while accounting for~50 Ω output impedance on each 

side of the paralleled high impedance buffers. 

 

 

4. DESIGNED OF AMPLIFIER 

The design of a high gain, low power, general purpose op amp with the structural simplicity of the 

classical Widlar architecture. The proposed op amp structure applies composite cascode connections in both 

the input stage and the second stage to achieve a gain of around 120 dB with low power consumption. The op 

amp employs the traditional two gain stages followed by a near unity gain buffer stage. With only two gain 

stages, simple Miller compensation with a capacitor as small as 3.5 pF can be used. This approach overcomes 

some limitations of conventional CMOS cascodes by enhancing the gain without using additional bias 
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circuits and requires only a small bias headroom voltage. A larger output voltage swing is then available 

using composite cascode amplifier stages than with conventional cascodes. As discussed in the former 

chapter, low power op amp can be designed by operating the MOS transistors in the subthreshold or weak 

inversion region. While the composite cascode provides high output impedance at a low bias current while 

setting some devices in the subthreshold region along with the other active region transistors, low power 

dissipation and high gain can be achieved at the same time. Figure 3 shows second stage cascade amplifier. 

 

 

 
 

Figure 3. Second stage cascade amplifier 

 

 

The cascade of amplifier which is amp the volt signal in the range from-1 to 0.7 v the linear range is 

obviously the range of interest in an op amp. It denotes the voltage range over which the two inputs can be 

driven together even though only one input terminal of the op amp is actually connected with the input signal 

without causing common mode distortion. The proposed compact high-gain op amp is laid out 0.25 µm 

process and fabricated. The slew rate and 1% settling time have been measured when the op amp is in the 

unity-gain feedback configuration with a 0.5 V step input. More than half of the power consumption is due to 

the output source follower. The input stage and second stage dissipated little power because of the low 

current weak inversion operating region. Using simple Miller capacitor compensation, Cc is required to be 

only 3.5 pF. The micrograph of the opamp is the area of the amplifier is about 0.05 mm
2
 and it could be 

reduced more if necessary. The simulated gain of this opamp is 120 dB. Schematic of cascade amplifier is as 

shown in Figure 4. Graphic of cascade amplifier is as shown in Figure 5. 

 

 

 

 

 
 

Figure 4. Schematic of cascade amplifier Figure 5. Graphic of cascade amplifier 
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5. CONCLUSION  

This work reports a low power, high gain op amp design in a 0.25 µm CMOS process using the 

composite cascode connection. The proposed op amp produces an open loop gain above one million. 

The design circuit is tested. It has shows a gain of about 117 dB. In addition, the composite cascode amplifier 

requires a compensation capacitor of only 3.5 pF which allows a very small op amp cell. This design is 

intended for applications where simplicity of layout, small cell size, and low power are important. The power 

supply voltage can be further reduced from 2 volt to 1.5 volt due to the freedom in biasing the 

 subthreshold devices. 
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