
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 7, No. 2, July 2018, pp. 74~81

ISSN: 2089-4864, DOI: 10.11591/ijres.v7.i2.pp74-81 74

Journal homepage: http://iaescore.com/journals/index.php/IJRES/index

Berger Code Based Concurrent Online Self-testing of

Embedded Processors

G. Prasad Acharya1, M. Asha Rani2
1Department of ECE, Sreenidhi Institute of Science and Technology, Hyderabad, TG, India.

2Department of ECE, JNTUH College of Engineering, JNTUH University, Hyderabad, TG, India

Article Info ABSTRACT

Article history:

Received March 16, 2018

Revised May 17, 2018

Accepted May 31, 2018

 In this paper, we propose an approach to detect the temporary faults induced

by an environmental phenomenon called single event upset (SEU).

Berger code based self-checking checkers provides an online detection of

faults in digital circuits as well as in memory arrays. In this work,

a concurrent Berger code based online self- testable methodology is proposed

and integrated in 32-bit DLX Reduced Instruction Set Computer (RISC)

processor on a single silicon chip. The proposed methodology is

implemented and verified for various arithmetic and logical operations of

the DLX processor. The FPGA implementation of the proposed design shows

that a meager increase in hardware utilization facilitates online self- testing to

detect temporary faults.

Keywords:

Berger Code

DLX RISC

Online testing

Single event upset
Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

G. Prasad Acharya,

Department of Electronics and Communication Engineering,

Sreenidhi Institute of Science and Technology, Hyderabad, TG, India.

Email: gprasad04@gmail.com

1. INTRODUCTION

The transistor miniaturization and integration density rate in today’s VLSI technology has been

following the Moore’s law and even More than Moore’s law. Since early 2000, the VLSI technology has

been shrunk into a deep submicron technology which has led to the development of complete system in

a single silicon chip and the technology has been named as System-on-chip (SoC) technology.

Today’s Multi-processor System on-chip (MPSoC) and Network on-chip (NoC) technologies with high level

integration are offering either server-based or cloud-based massively parallel processing.

Graphics Processing Unit (GPU) processors developed by NVIDIA consist of massively parallel core

(even up to thousands) architecture that are capable of executing thousands of smaller tasks simultaneously

thereby increasing the computational speed by many folds. These processors play an important role in

accelerating the computational speed in very high data involved applications such as artificial intelligence in

automobiles, drones and video surveillances.

RISC based processors are the backbones of application specific embedded systems. RISC provides

a platform wherein a small-set of instructions are made available for specific tasks so that the execution takes

place at much higher speed i.e. even more than millions of instructions per second, hence also called

as MIPS technology.

Due to sub-micron miniaturization and high integration density of transistors, today’s ICs are

becoming more and more susceptible not only to manufacturing defects but also to the environmental

disturbances such SEU. The manufacturing defects, a majority of them being stuck-at faults may cause

the permanent failure of the system and are well targeted with offline-Built in Self-test (BIST) methodology

[1], [2]. The temporary faults are harder to detect during test because these faults are unlikely to occur during

test. These faults normally occur at field and may cause the malfunctioning of the system during the time

IJRES ISSN: 2089-4864

Berger Code Based Concurrent Online Self-testing of Embedded Processors (G. Prasad Acharya)

75

when they occur. The online self-test methodologies have the capability of detecting such type of temporary

faults without system downtime.

This paper is organized as follows: The section-2 outlines the architecture and instruction format of

DLX RISC processor. The embedded processor testing methodologies are presented in section 3.

The proposed concurrent online self-test methodology is presented in section 4. Section 5 discusses about

the experimental work presented in this paper. Finally, the concluding remarks are presented in section 6.

2. DLX RISC PROCESSOR ARCHITECTURE

The DLX is a 32-bit Reduced Instruction Set Computer (RISC) developed based on load-store and

millions of instructions per second (MIPS) architecture [3]. The DLX RISC processor is the simplest

architecture (as shown in Figure 1) used for academic purpose and is the basic architecture for commercially

available RISC processors. The DLX architecture includes a register set of 32 registers each of size 32-bits

wide and a 32-bit Program counter (PC). The processor is based on five-stage pipelining architecture. These

pipeline stages are Instruction Fetch (IF), Instruction Decode (ID), Execute (EX), Memory Access (MEM)

and Write back (WB).

During IF stage, a 32-bit instruction will get fetched from memory. The PC holds the address of next

instruction to be fetched (i) by incrementing PC by 4 in case of sequential execution and (ii) branch target

address predicted by the branch prediction logic. During ID stage, the instruction decoder decodes the 32-bit

instructions into various fields as given in Table 1 and determines the required operands and branching

address. During EX stage, the ALU performs the arithmetic and logical operations on the operands

decoded/provided by the instruction decoder. During MEM stage, the computed results will be stored in

the data memory. The result will be written back into register during WB stage. The MEM and WB cycles

can be performed in a single clock cycle and hence the execution of an instruction can be completed in 4

clock cycles.

Figure 1. Architecture of DLX RISC processor

1 2 3 4 5 6 7 8

IF1 ID1 EX1 MEM1 WB1

 IF2 ID2 EX2 MEM2 WB2

 IF3 ID3 EX3 MEM3 WB3

 IF4 ID4 EX4 MEM4 WB4

Figure 2. Five stage pipelining of DLX processor

The Arithmetic and Logic Unit (ALU) performs the 32-bit integer and floating point (single and

double precision) arithmetic operations and logical operations. All the instructions in DLX processors are

Clock pulse (n)

 ISSN: 2089-4864

 IJRES Vol. 7, No. 2, July 2018 : 74 – 81

76

32-bit long and can be divided into the following three classes according to the type of the operation:

R (register)-type, I (immediate) -type and J (jump)-type. In R-type instructions, three registers (two source

registers and one destination) are specified in the instruction. In I-type instructions, one source register, 16-bit

immediate operand (sign extended to 32-bit) are used. The J-type instructions consist of 6-bit opcode and

26-bit operand. The destination address is calculated using the 26-bit operand value. Table 1 summarizes

the instruction formats of DLX processor.

Table 1. Instruction formats of DLX RISC
Instruction

Type

Bits

31-26 25-21 20-16 15-11 10-0

R-type 0x0 R1 R2 Rd Unused

I-type Opcode R1 R2 Immediate

J-type Opcode Value

3. OVERVIEW OF EMBEDDED PROCESSOR TESTING

The digital circuit testing techniques can be broadly classified into external testing and self-testing.

The conventional method of manufacturing test of digital circuits is carried out using Automatic Test

Equipment (ATE) hardware. The quality test patterns are generated using test pattern generation algorithm

and their expected responses are stored in ATE memory.

The hardware based self-testing (also known as Built in Self-Test) of a processor facilitates

the generation of test patterns using LFSR, application of the test patterns to the processor under test and

the analysis of test responses for its functional correctness without the use of any external circuitry.

The processor uses the internal resources of the processor such as existing hardware, memory and other test

support hardware. The major issues to be dealt carefully with the BIST is the Hardware overhead, test data

generation and test application time, performance degradation especially in critical paths in case of high

performance devices, power consumption during self-testing.

The software-based self-testing (SBST) [4]-[9] provides an alternative solution for the above

described limitations of hardware based self-testing methodology. In this methodology, generation and

application of test patterns for the processor under test and response analysis are carried out by especially

written software routines executed on the processor itself. The self-test routine is stored in instruction

memory and the data needed is stored in Data memory of the processor. A simplified processor model for

software based self-testing is shown in Figure 3.

The SBST is based on Instruction Set Architecture (ISA) and the Register Transfer Language (RTL)

description of the processor and the test engineer need not have complete hardware and the details of

structural fault model. The processor executes the test programs at its actual speed and hence SBST is

capable of providing at-speed test solutions unlike to hardware-based BIST. However SBST is capable of

providing at-speed self-test solutions to the processor for functionality verification both at manufacturing

and/or field level, it cannot substitute the structure based test approaches like BIST and hence can be used to

supplement the structural based test approaches to provide a more quality test.

Most of the BIST approaches (either hardware or software based) found in the literatures are off-line

or non-concurrent test approaches. In these approaches either the functionality of the processor is suspended

or the processor is in idle mode during test and test is not carried out concurrently with its functional

operation. In concurrent online Self-test approach which is the main contribution of this paper,

both the functional operation and test operation will be carried out simultaneously.

Figure 3. Processor model for software-based self-testing

IJRES ISSN: 2089-4864

Berger Code Based Concurrent Online Self-testing of Embedded Processors (G. Prasad Acharya)

77

4. PROPOSED ONLINE SELF-TESTABLE METHODOLOGY

The major contribution for malfunctioning of digital circuits/systems in the field (while on

operation) is due to the temporary (dynamic) faults [10], [11]. These faults may be caused by radiation and

other hard environmental conditions. The single event upset (SEU) is the radiation-induced errors in

microelectronic circuits that may change the behavior of dynamic circuits as well as memory devices.

Since these faults are non-recurrent and harder to detect during test using offline BIST, online self-test

methodologies are capable of detecting the temporary faults and hence its importance [3], [12]. This paper

presents the design of Berger code based totally self-checking checkers (TSC) [13], [14] to detect both

permanent stuck-at faults as well as temporary faults in the DLX RISC processor. Figure 4 shows

the generalized architecture for the proposed self-testable processor.

Figure 4. Simplified architecture of proposed self-testable DLX processor

4.1. Totally Self-Checking Checkers (TSC) Using Berger Code

A Berger code forms a unidirectional error detecting code where check bits represents the number of

zeros in the information bit sequence, I. The number of check bits (k) for the information sequence of length

n bits is evaluated using the inequalityk = ⌈log2
(n+1)

⌉. The combinational circuit, C1 in Figure 4 is a

combinational circuit that produces the complement of the check bits which is then fed to 2-rail checker

along with the k-check bits. The two rail-checker produces two complementary outputs f and g in no fault

case otherwise it produces f and g identical.

4.1.1. Combinational Circuit, C1

A Berger code is said to be maximal length Berger code has if n= (2k-1) otherwise it is non-maximal

length Berger code. The combinational circuit C1 in Figure 4 produces an output which is the binary

equivalent of the number of 1’s in the information sequence, I. In order to compute the check bits for non-

maximal length Berger code, we define a number m=I0 mod (k+1), where I0 is the number of 0’s in

the sequence I. The Berger code check bits is the binary equivalent of m and its length is equal to [log2(k+1)].

4.1.2. Two-rail Checker

The two-rail checker as shown in Figure 5(a), is 1-out-of-2 code which receives two groups of

inputs X=(x 1, x2, …xn) and Y=(y1, y2, …yn) from the functional circuit and produces two outputs f and g that

are complement to each other. As long as yi=(xi)| is satisfied, the outputs of the two-rail checker will be

f=0 and g=1. The totally self-checking two-rail checker can be extended for any arbitrary pairs (xiyi and

xi+1yi+1) of inputs as given in the structure of Figure 5(b).

4.2. Berger code predictions for ALU operations

An Arithmetic and Logical Unit (ALU) is the heart of any processor and performs various arithmetic

and logical operations. This section presents the predictions of Berger code for various ALU operations.

Consider two n-bit operands be A=(an, an-1, …. a2,a1) and B=(bn, bn-1, …. b2,b1). Let Ac and Bc be the Berger

code of A and B respectively.

https://en.wikipedia.org/wiki/Error_detection_and_correction

 ISSN: 2089-4864

 IJRES Vol. 7, No. 2, July 2018 : 74 – 81

78

Figure 5 (a). Self-checking 2-rail checker Figure 5 (b). Self-checking 2-rail checker with 6

inputs

4.2.1. Addition (Y=A+B+cin)

The Berger code of the sum (Yc) is computed as Yc=Ac+Bc-cin-Cc+cout, where cin, cout and Cc are

input carry, output carry and Berger code of intermediate carries C=(cn, cn-1, …. c2,c1) respectively.

4.2.2. Subtraction

The Berger code of the difference (Yc) is computed as Yc=Ac-Bc+bin+BIc-bout, where bin, bout and BIc

are in borrow, output borrow and Berger code of intermediate borrows BI=(bin, bin-1, …. bi2,bi1) respectively.

4.2.3. 2’s complement subtraction (Y=A-B=A+B|+1)

The Berger code of the sum (Yc) is computed as Yc=Ac-Bc-(cin)|-N(C)+cout, where cin, cout and N(C)

are input carry, output carry and number of 1’s in the intermediate carries C=(cn, cn-1, …. c2,c1) respectively.

4.2.4. Array Multiplier (Y=A*B)

The Berger code of the multiplier output (Yc) is computed as Yc=4*Ac-4*Bc-Ac*Bc-N(C)+12, where

𝑁(𝐶) =∑ ∑ 𝐶𝑖,𝑗
𝑛−1

𝑗=1

𝑚

𝑖=1
 and Ci,j is the carry generated by the full adder in the stage of ith row and jth column

of m-bit by n-bit array multiplier as shown in Figure 6 (m=4 and n=4).

Figure 6. 4x4 binary array multiplier

IJRES ISSN: 2089-4864

Berger Code Based Concurrent Online Self-testing of Embedded Processors (G. Prasad Acharya)

79

4.2.5. Logical-AND (Y=A.B)

The Berger code of the Logical-AND output (Yc) is computed as Yc=Ac+Bc- Zc where Zc represents

the Berger code of (A|B).

4.2.6. Logical-OR (Y=A|B)

The Berger code of the Logical-OR output (Yc) is computed as Yc=Ac+Bc- Zc where Zc represents

the Berger code of (A.B).

4.2.7. Logical-Inverter (Y=A|)

The Berger code of the Logical-Inverter output (Yc) is computed as Yc=n-Ac.

4.2.8. Logical-XOR (Y=A^B)

The Berger code of the Logical-XOR output (Yc) is computed as Yc=Ac+Bc- 2*Zc+n where Zc

represents the Berger code of (A.B).

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

The Berger code based Totally Self-checking Checker (TSC) logic is incorporated for various

arithmetic and logical operations within the RTL description of the DLX RISC processor and simulated using

Xilinx Vivado 2017.2. Figure 7 demonstrates the simulation waveform of the DLX processor. The 32-bit

instruction Data_in=0x04031040 is decoded as opcode=01 (ADD operation), [RA]=0x01, [RB]=0x02.

The result of the ADD operation is [RD]=0x03. Similarly, Data_in=0x0C062900 is decoded as opcode=03

(Logical-OR operation), [RA]=0x04, [RB]=0x05. The result of the Logical-OR operation is [RD]=0x05.

Figure 8 demonstrates the capability of Berger code based TSC to detect the presence of fault during its

normal operation.

Two versions of the processor (i) standard DLX RISC architecture and (ii) TSC based Self-testable

DLX RISC Processor are implemented in 7-series Zynq FPGA (xc7z020clg484-1). The design is synthesized

using Xilinx Vivado synthesis tool and the synthesized netlist is shown in Figure 9. The device utilization

reports are compared for both the designs as given in Table 2.

Figure 7. Simulation results of Self-testable DLX RISC Processor (Fault-free case)

Figure 8. Simulation results of Self-testable DLX RISC Processor (Faulty case)

 ISSN: 2089-4864

 IJRES Vol. 7, No. 2, July 2018 : 74 – 81

80

Figure 9. Synthesized net list of Self-testable DLX RISC Processor

Table 2. Comparison of Device utilization summery

Standard DLX RISC Processor
TSC based Self-testable DLX RISC

Processor

Logic Resources Utilized Available % of Utilization Utilized Available % of Utilization

1. Slice Logic (LUTs) 274 53200 0.42 552 53200 1.04

2. LUT as Logic 226 53200 0.42 504 53200 0.95
3. LUT as memory 48 17400 0.28 48 17400 0.28

4. Slice Registers as FFs 155 106400 0.15 157 106400 0.15

5. DSPs 3 220 1.36 3 220 1.36
No. of Bonded IOBs 58 200 29 59 299 29.50

Total power consumption 34.527 W 38.115 W

6. CONCLUSION

Berger code provides a unidirectional error detecting capability of detecting single or multi-bit

errors in a given information sequence. Berger code prediction for the various arithmetic and logical

operations has been summarized in this paper. The Berger code based totally self-checking checker (TSC)

combined with two-rail checker provides a solution for the detection of temporary faults which are mainly

induced by single event upset (SEU). The work presented in this work has demonstrated the concurrent

online self-testing capability of DLX RISC processor. The implementation results obtained in this work has

shown that the built-in self-testing capability can be incorporated in the processor design with meager

overhead in the hardware (LUTs) and marginal increased power consumption.

REFERENCES
[1] Shekhar Borkar, Microarchitecture and Design Challenges for Gigascale Integration, Proceedings of the 37th

annual IEEE/ACM International Symposium on Microarchitecture, p.3-3, December 04-08, 2004, Portland,

Oregon.

[2] Cristian Constantinescu, Trends and Challenges in VLSI Circuit Reliability, IEEE Micro, v.23 n.4, p.14-19, July

2003.

[3] Hala ElAarag, A complete design of a RISC processor for pedagogical purposes, Journal of Computing Sciences in

Colleges, Volume 25 Issue 2, December 2009 Pages 205-213.

[4] Mihalis Psarakis and Dimitris Gizopoulos, Ernesto Sanchez and Matteo Sonza Reorda, Microprocessor Software-

Based Self-Testing, IEEE Design & Test of Computers, IEEE, 2010, Pg. 4-18.

[5] C.H.-P. Wen, L.-C. Wang, and K.-T. Cheng, ‘‘Simulation-Based Functional Test Generation for Embedded

Processors,’’ IEEE Trans. Computers, vol. 55, no. 11, 2006, pp. 1335-1343.

[6] N. Kranitis et al., “Software-Based Self-Testing of Embedded Processors,” IEEE Trans. Computers, vol. 54, no. 4,

2005, pp. 461-475.

[7] D. Gizopoulos et al., ‘‘Systematic Software-Based Self- Test for Pipelined Processors,’’ IEEE Trans. Very Large

Scale Integration (VLSI) Systems, vol. 16, no. 11, 2008, pp. 1441-1453.

https://dl.acm.org/citation.cfm?id=1038926&CFID=1025087421&CFTOKEN=16728473
https://dl.acm.org/citation.cfm?id=1038926&CFID=1025087421&CFTOKEN=16728473
https://dl.acm.org/citation.cfm?id=1038926&CFID=1025087421&CFTOKEN=16728473
https://dl.acm.org/citation.cfm?id=942690&CFID=1025087421&CFTOKEN=16728473
https://dl.acm.org/citation.cfm?id=942690&CFID=1025087421&CFTOKEN=16728473

IJRES ISSN: 2089-4864

Berger Code Based Concurrent Online Self-testing of Embedded Processors (G. Prasad Acharya)

81

[8] K. Batcher and C. Papachristou, “Instruction Randomization Self-Test for Processor Cores,” Proc. 17th IEEE VLSI

Test Symp. (VTS 99), IEEE CS Press, 1999, pp. 34-40.

[9] By Dimitris Gizopoulos, A. Paschalis, Yervant Zorian, Embedded Processor-Based Self-Test, Kluwer Academic

Publishers, 2013.

[10] C. Constantinescu. Intermittent faults in VLSI circuits. In Proceedings of the IEEE Workshop on Silicon Errors in

Logic-System Effects, 2007.

[11] Douglas M. Blough, Gregory F. Sullivan, Gerald M. Masson, Intermittent Fault Diagnosis in Multiprocessor

Systems, IEEE Transactions on Computers, v.41 n.11, p.1430-1441, November 1992

[12] Jiem-Chung Lo, Suchai Thanawastien, T. R. N. Rao, Cooncurrent Error Correction in Arithemetic and Logical

operations Using Berger Codes, Proceedings of the 9th Symposium on Computer Arithmetic, Santa Monica, CA,

September 1989, pp. 233-240.

[13] Parag K. Lala, Fault tolerant and fault testable hardware design, Prentice-Hall International, 1985.

[14] Parag K. Lala, Self-checking and Fault-tolerant Digital Design, Morgan Kaufmann, 2001.

BIOGRAPHIES OF AUTHORS

G. Prasad Acharya received the B. Tech (ECE) degree in the year 2004 from JNT University,

Hyderabad, A. P., India. He had obtained his Masters degree in Engineering (Digital systems)

from Osmania University, Hyderabad. He is currently working towards his PhD degree in the

Department of Electronics and Communication at JNTUH University, Hyderabad. His area of

research interests includes VLSI Design & Testing and Embedded systems. He has 13 years of

teaching and research experience and is presently working as Associate Professor in the

Department of ECE at Sreenidhi Institute of Science and Technology, Hyderabad, India.

Dr. M. ASHA RANI did her B.E from Osmania University, Hyderabad during 1986-90,

completed her M.Tech and Ph.D from JNTU Hyderabad in 1997 and 2008 respectively.

Presently she is working as Professor and Chairman, Board of Studies in the Department. of

Electronics and Communication Engineering, JNTUH College of Engineering, Hyderabad. She

has 27 years of teaching and research experience. Her research interest is Fault Tolerant System

Design, Design for Testability, Embedded Systems Design, VLSI Design.

https://dl.acm.org/citation.cfm?id=147802&CFID=1025087421&CFTOKEN=16728473
https://dl.acm.org/citation.cfm?id=147802&CFID=1025087421&CFTOKEN=16728473
https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Parag+K.+Lala%22

