
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 6, No. 3, November 2017, pp. 186~190

ISSN: 2089-4864, DOI: 10.11591/ijres.v6.i3.pp186-190 186

Journal homepage: http://iaescore.com/journals/index.php/IJRES/index

Optimization of Resource Utilization of Fast Fourier Transform

Subhash Chandra Yadav
1
, Pradeep Juneja

2
, R. G. Varshney

3

1,2School of Electronics, Graphic Era University, Dehradun, India
3School of Applied Sciences, Graphic Era University, Dehradun, India

Article Info ABSTRACT

Article history:

Received Aug 02, 2017

Revised Oct 03, 2017

Accepted Oct 17, 2017

 This paper considers the optimization of resource utilization for three FFT

algorithms, as it pertains not to the input samples or output modes, but to the

twiddle factors that arise in Cooley-Tukey FFT algorithms. Twiddle factors

are a set of complex roots of unity, fixed by the transform order for the

particular algorithm. This paper shows the comparison between three known

FFT algorithms, DIT-FFT, DIF-FFT and GT algorithm. All these algorithms

are implemented on FPGA (Spartan-3 XC3S4000l-4fg900) with XILINX

10.1 ISE. Keywords:

Decimation-In-Frequency (DIF)

Decimation-In-Time (DIT)

Discrete Fourier Transform

(DFT)

Fast Fourier Transform (FFT)

Field Programmable Gate Array

(FPGA)

Very Large Scale Integrated

Circuit Hardware Description

Language (VHDL)

Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Subhash Chandra Yadav,

School of Electronics, Graphic Era University

566/6, Bell Road, Clement Town, Dehradun 248002, India.

Email: subhash.yadav775@gmail.com

1. INTRODUCTION

There are mainly two reasons to convert a time domain signal into frequency domain signal. First, to

decompose a complex signal into simpler parts to facilitate analysis and secondly differential equation,

difference equations and convolution operations in the time domain become algebraic operations in the

frequency domain. The Fourier series used to convert continuous time and discrete time periodic sequence

into frequency domain. The basic representation of periodic signal is the Fourier series, which is a linear

weighted sum of related sinusoids or complex exponential [1]. The Fourier transform is a way to decompose

a signal into its constituent frequencies and versions it is applied to the aperiodic continues time and discrete

time domain signal [2]. DFT is a finite duration discrete frequency sequence which is obtained by sampling

one period of Fourier Transform .Sampling is done at ‘N’ equally spaced points over the period extending

from ω0=0 to ω0=2𝜋.

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−(𝑗2𝜋𝑛𝑘)/𝑁

𝑁−1

𝑛=0

 (1)

Where WN =𝑒−(𝑗2𝜋)/𝑁 and k=0..1..N-1, WN is called twiddle Factor, it makes the computation of DFT more

easy and fast. The twiddle factor (WN), describes a "rotating vector", which rotates in increments according to

the number of samples N. As 180 degrees out of phase are the negative of each other. So for example, W for

N=4 samples, where n=0, 4, 8, etc, are the negative of n=2, 6, 10, etc.

IJRES ISSN: 2089-4864

Optimization of Resource Utilization of Fast Fourier Transform (Subhash Chandra Yadav)

187

The Butterfly diagram takes advantage of this redundancy and symmetry, which is part of what

makes the FFT possible. An FFT is a way to compute the same result more quickly computing a DFT

of N points in the naive way, using the definition, takes O(N
2
) arithmetical operations, while an FFT can

compute the same result in only O(N log N) operations. The difference in speed can be substantial, especially

for long data sets where N may be in the thousands or millions—in practice, the computation time can be

reduced by several order of magnitude in such cases, and the improvement is roughly proportional to N / log

(N). This huge improvement made many DFT-based algorithms practical. The FFT is a fast algorithm to find

out the DFT of a sequence, a direct computation of DFT of a sequence required (𝑁2) complex multiplication

and(𝑁2 − 𝑁) complex addition and if we compute DFT of a sequence by FFT algorithm there required

(
𝑁

2
log2 𝑁) Complex Multiplication and (𝑁 log2 𝑁) complex addition. In the case of DFT there are N

2

complex multiplication and NN 2 complex addition are required for N point DFT. But in the case of FFT

there are
𝑁

2
𝑙𝑜𝑔2N multiplication and NN 2log addition are required.

Figure 1. Twiddle factor as a rotating vector

2. DECIMATION IN TIME FFT ALGORITHM

Decimation in time FFT algorithm imply first dividing the input sequence in time domain [3] and

then processed for the FFT computation. Let b)(nx e a sequence which we want to convert into frequency

domain and)(1 mf and)(2 mf are the even and odd part respectively then the DFT of the sequence)(nx is

given by Equation 1 as :

1
2

0

)12(

1
2

0

2
)12()2()(

N

m

mk

N

N

m

km

N WmxWmxkX

(2)

The combination of equation (3) ,(4), (5) and (6) gives the flow graph of DIT-FFT as shown in Figure-2(a).

By the property of twiddle factor WN
2
=WN/2 and the definition of DFT we can write :

X(k)=F1(k) + 𝑊𝑁
 𝑘 F2(k) (3)

Here F1(k) is N/2 point DFT of f1(m) and F2(k) is N/2 point DFT of f2(m).

As N/2 is the period of the sequence f1(m) and f2(m) so replacing k by (k+
𝑁

2
) in Equation 3

X(k+
𝑁

2
)=F1(k)-𝑊𝑁

 𝑘 𝐹2(𝑘) (4)

By the periodic property of DFT and twiddle factor. Again decimating the sequence F1(k) and F2(k) we have

G11(0)= X(0) + X(2) (5)

G11(1)= X(0) − X(2) (6)

3. DECIMATION IN FREQUENCY FFT ALGORITHM

Decimation in frequency FFT algorithm indicates first computatation of FFT and then dividing the

output sequence in even and odd part which is in frequency domain [4]. The flow graph is shown in Figure 2.

We can devide equation (1) into two parts as follows:

 ISSN: 2089-4864

 IJRES Vol. 6, No. 3, November 2017 : 186 – 190

188

1

2/

1
2

0

)()()(
N

Nn

kn

N

N

n

kn

N WnxWnxkX

(7)

Put n=n+N/2 ,limit will change as

When n=N/2 N/2=n +N/2

therefore n=0

When n=N-1 N-1=n +N/2

therefore n=N–1–N/2=N/2-1

Putting these values in second summation of above eq. we get :

1
2

0

)2/(

1
2

0

)
2

()()(

N

n

Nnk

N

N

n

kn

N W
N

nxWnxkX

Which can be reduced to

r

N

n

nxrX 2

1
2

0

)1()([)2(

k

N

n

nxkX)1()([)(

1
2

0

kn

NW
N

nx)]
2

((8)

Now if we decimate the equation (8) into even and odd parts then we have

r

N

n

nxrX 2

1
2

0

)1()([)2(

rn

NW
N

nx 2)]
2

((9)

(a)

(b)

(c)

Figure 2. (a)flow graph of DIT-FFT(b)flow graph of DIF-FFT(c)flow graph of G-transpose FFT

By putting k=2r+1 in eq. (4.5.16) we will get odd number of sequence

12

1
2

0

)1()([)12(

 r

N

n

nxrX
nr

NW
N

nx)12()]
2

((10)

Where r is an integer which varies from 0 to
N

2
− 1

IJRES ISSN: 2089-4864

Optimization of Resource Utilization of Fast Fourier Transform (Subhash Chandra Yadav)

189

As we know (-1)2r=1 and (-1)2r+1=-1

Putting these values in Equation 9 and 10,

1
2

0

)([)2(

N

n

nxrX
rn

NW
N

nx 2)]
2

(

 (11)

1
2

0

)([)12(

N

n

nxrX n

N

rn

N WW
N

nx
2

)]
2

((12)

From Equation 11 and 12

g(n)=𝑥(𝑛) + 𝑥 (𝑛 +
𝑁

2
) (13)

h(n)=[𝑥(𝑛) − x (n +
N

2
)]𝑊𝑁

 𝑛 (14)

Again decimating the sequence g(n) and h(n) we have:

X(k)=g(0) + g(1) (15)

X(k)=g(0) – g(1)

4. G -TRANSPOSE ALGORITHM

G-Transpose algorithm decreases the number of twiddle accesses by an asymptotic factor of log (n)

[5]. Idea behind the G-transpose algorithm is to decrease the number of twiddle table accesses by

restructuring the DFT. The G-Transpose network applies the twiddle factors to each sub network’s inputs. In

fact, permuting the G-Transpose network’s rows into bit-reversed order while leaving connectivity

unchanged (that is, redrawing the G-Transpose network such that the inputs given in the order x (0), x(2),

x(1), and x(3)) yields the DIT network.

Thus, a G-Transpose implementation produces the same results in finite precision arithmetic as a

DIT implementation but processes input/output data like a DIF implementation. Figure 2(c) shows the flow

graph of G
T
 algorithm. G

T
algorithm give an asymptotic reduction in the number of twiddle factor loads

required for first stage of decimation which is responsible for minimizing memory size as compare to

Cooley-Tukey decimation-in-time and decimation-in-frequency FFT.

5. SIMULATION RESULTS AND DISCUSSION

We investigated G-Transpose, Cooley-Tukey Decimation-in-Time and Decimation-in-Frequency

FFT algorithms, We have taken following parameter for simulation of all algorithms Radix=2, N=4 (4 point

FFT) Input sequence x(n)={2, 2, 4, 0} Twiddle Factor W4
0=1 and W4

1=- j. The result of simulation in

MATLAB for all the three algotithm are same and given as {8, -2-2j, 4, -2+2j} as shown in Figure 3, for

memory optimization simulation of all Three algorithm is successfully developed using VHDL on XILINX

Spartan-3 XC3S4000l-4fg900 FPGA development board. The simulation result for all the three algorithms

are same which means the result of FFT is not affected but the resource utilization of all three algorithms is

different. Table 1 shows the resource utilization for all three algorithms on FPGA. In the case of G-Transpose

algorithm there is a decrease in number of resource utilization. It is because the number of twiddle factor

loads required for the first stage of decimation is less in G-transpose as compare to DIT-FFT and DIF-FFT.

Table 1. Simulation Results for Three Algorithms in XILINX Spartan-3 XC3S4000l-4fg900 FPGA
Resource Utilization Algorithm Used

Occupied Slices

G-Transpose 304

DIT-FFT 352
DIF-FFT 352

Total Number of 4 input

LUTs

G-Transpose 608

DIT-FFT 704
DIF-FFT 704

Number used as a route-thru

G-Transpose 3

DIT-FFT 6

DIF-FFT 6

 ISSN: 2089-4864

 IJRES Vol. 6, No. 3, November 2017 : 186 – 190

190

Figure 3. Simulation result of G
T
, DIT-FFT, DIF-FFT algorithm (all the results are same)

The graph below shows the resource utilization of FPGA for three algorithms

(a) (b) (c)

Figure 4. Device utilization comparison for three algorithm (a) Number used as route thru,(b) Occupied slices

(c) Total number of 4 input LUTs

6. CONCLUSION

We investigate three algorithms on FPGA using VHDL and observed that the number of complex

addition and multiplication are same for all the three algorithm but the resource utilization of the FPGA for

G-Transpose algorithm is less as compare to DIT-FFT and DIF-FFT which leads to reduce the memory.

REFERENCES
[1] Vretblad, Anders, Fourier Analysis and Its Applications.Springer,2003

[2] Proakis, J. G. “ Digital Signal Processing, Principles, algorithms and applications” Prentice Hall, Inc., 1996.

[3] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of complex Fourier series,” Math.

Comput., vol. 19, pp. 297–301,1965.

[4] S. Salivahnan, A. vallavraj, “Digital Signal Processing” Tata McGraw-Hill 2000.

[5] Kevin J. Bowers, Ross A. Lippert, Ron O. Dror and David E. Shaw ”Improved Twiddle Access for Fast Fourier

Transforms” IEEE transactions on signal processing, vol. 58, no. 3,pp. 1122-1130, March 2010.

