
International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol. 4, No. 3, November 2015, pp. 161~172
ISSN: 2089-4864 161

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

Development of BSP for ARM9 Evaluation Board

Vinayak Pandit K., Sanket Dessai, Shilpa Chaudhari
Department of Computer Engineering, M.S. Ramaiah School of Advanced Studies, Bangalore-560058, India

Article Info ABSTRACT

Article history:

Received Mar 2, 2015
Revised Jun 19, 2015
Accepted Jul 12, 2015

 With an increasing usage of ARM9 core for different kinds of applications
ranging from data acquisition to Mobile application, there arises the need for
developing ARM9 based board. To bring up this board, board supporting
package (BSP) is must. Board supporting package virtualizes the platform
hardware so that the different drivers can be ported easily on any hardware.
The boot loader is the initial stage of firmware, which initializes the
hardware components presents on the board. A universal Bootloader is
chosen and is to be customized with respect to target board. In the later
section bootloader is interfaced to the kernel which is obtained form an
authorized distributor under general purpose license. The customized board
specific routines as well drivers are ported onto the hardware. Then the
compiled kernel image is ported onto the target board using a debugger and
SAM-BA utility. Linux kernel has seen major releases; the basic architecture
of the Linux kernel has remained more or less unchanged. The latest 2.6
version of Linux kernel is ported onto target hardware. Kernel support for
many architectures and high-end I/O devices gives the independence to
choose appropriate hardware for developing system. The bootloader
customization is the critical step, which involves a lot of modifications in the
header files. BSP components such as bootloader, kernel is compiled using
GNU tool chain; obtained image is ported on target using debugger. BSP
porting is a very complex task, which required knowledge of hardware and
software control sequence and boot strategy of the controller.

Keyword:

ARM9
Board
BSP
Evaluation
GNU

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Sanket Dessai,
Departement of Computer Engineering,
M.S.Ramaiah School of Advanced Studies,
#470-P, Peenya Industrial Area, Bangalore, Karnataka, India. 560058.
Email: sanketdessai@msrsas.org

1. INTRODUCTION

In the wake of increase in the usage of ARM9 processors for different kinds of applications ranging
from simple automation to the complex mobile applications, there arises a need for developing applications
based on ARM9 processors. Therefore, in recent years, embedded systems play a key role in the era of
cutting edge technology. With this thought I have taken up the project to development ARM9 based
development board. Initially Development board is considering being a raw board which consist many
hardware components. The Development board needs appropriate firmware or software to make the hardware
work properly. Nonetheless, the requirements of current embedded applications are too heavy and
complicated to be handled by most of firmware and single process software systems. Nevertheless, well-
designed operating systems can handle those heavy and complicated requirements. Therefore, more and more
operating systems are running on embedded systems. One killer application of Linux is to be used as the
operating system of an embedded system. ARM is an architecture preferred by many embedded Linux
developers. So that in this project Linux Operating System plays vital role in development environment.
AT91SAM9260 controller is the heart of the development board. USB, Ethernet, SDRAM, Flash Memory,
and MMC card interfaced with the controller for future application. Through out document I will discuss how

 ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 161 – 172

162

to deploy the basic system onto an ARM9 development board. Basic system is nothing but a Board
Supporting Package.

A BSP or “Board Support Package” is the set of firmware software used to initialize the hardware
components or devices on the board and implement the board-specific routines that can be used by the kernel
and device drivers alike. BSP is thus a hardware abstraction layer gluing hardware to the OS by hiding the
details of the processor and the board. The BSP hides the board- and CPU-specific details from the rest of the
OS, so portability of drivers across multiple boards and CPUs becomes extremely easy. Another term that is
often used instead of BSP is the Hardware Abstraction Layer (HAL).
The BSP has two components:
1. The microprocessor support: Linux has wide support for all the leading processors in the embedded

market such as ARM, MIPS, and soon the PowerPC.
2. The board-specific routines: A typical HAL for the board hardware will include:

a. Bootloader support
b. Memory map support
c. System timers
d. Interrupt controller support
e. Real-Time Clock (RTC)
f. Serial support
g. Bus support (PCI/ISA)
h. DMA support
i. Power management

2. BOARD HARDWARE AND DEVELOPMENT SUITE

The One killer application of Linux is to be used as the operating system of an embedded system.
ARM is an architecture prefered by many embedded Linux developers. Development of Evaluation kit is a
very challenging role, we need to consider both hardware and software specifications. BSP is a set of
software packages which mainly initializes the board specific routines. BSP is thus a hardware abstraction
layer gluing hardware to the OS by hiding the details of the processor and the board. The BSP hides the
board- and CPU-specific details from the rest of the OS. Project deals with Linux BSP and porting issues on
AT91SAM9260-EK board. Free Linux kernel version is used to implement BSP. Kernel 2.6 series version
supports following devices:
 A 32-bit ARM processor
 64 MB of SDRAM
 8 MB of flash
 256 Mbytes of NAND Flash memory
 1 Serial Data-Flash
 1 serial EEPROM
 USB(2.0) Device and Host Interface
 MMC Card Interface

2.1. Development Suite

Figure 2 illustrates the overall design of the project. Toolchain setup is initial step of the embedded
linux development. The toolchain that is used on embedded systems is known as the cross-platform
toolchain. The tool chain need to put together to cross-develop applications for any target includes the binary
utilities, such as ld, gas, and ar, the C compiler, gcc, and the C library, glibc. Bootstrap program does the
minimum hardware configuration such as power management control, PIO and clock configuration.
Bootstrap is compiled by using toolchain which is already installed on host computer. In the next step is to
customize the bootloader, the boot loader is expected to initialize various devices, and eventually call the
Linux kernel, passing information to the kernel. BSP components can be selected using latest Kernel version.
Kernel source consist the board supporting routines, required components can be selected, by using make
menuconfig, which displays the console window; select required components for target board. The list of
what software needs to go into the kernel and what can be compiled as modules can be specified using this
step. At the end of this step, kbuild records this information in a set of known files so that the rest of kbuild is
aware of the selected components. Obtained bootloader and kernel image is ported on target board using
debugger. SAM-BA In system programmer is used to port the images.

IJRES ISSN: 2088-8708

Development of BSP for ARM9 Evaluation Board (Sanket Dessai)

163

Figure 1. AT91SAM92600 Evaluation Kit

Figure 2. Development Steps

2.2. GNU Tool Setup

One of the initial steps in the embedded Linux movement is setting up the toolchains for building
the kernel and the applications. The toolchain that is used on embedded systems is known as the cross-
platform toolchain. The tool chain we need to put together to cross-develop applications for any target
includes the binary utilities, such as ld, gas, and ar, the C compiler, gcc, and the C library, glibc.

The first step in building the tool chain is selecting the component versions we will use. This
involves selecting a binutils version, a gcc version, and a glibc version. Because these packages are
maintained and released independently from one another, not all versions of one package will build properly
when combined with different versions of the other packages. Here we have used binutils-2.16, gcc compiler

 ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 161 – 172

164

(gcc-3.4.4), library (glibc-2.3.5) and kernel version (linux-2.6.22.6). Download all required tool chain
package from ftp.gnu.org . Most tool chain build steps involve carrying out the following actions:-
1. Unpack the package.
2. Configure the package for cross platform development
3. Build the package.
4. Install the package.
Cross platform environment will ready after toolchain installation. Figure 3 and Figure 4 shows the binary
utilities and kernel images.

Figure 3. Binary Utility Window

Figure 4. Kernel Image and Lib Utility Window

IJRES ISSN: 2088-8708

Development of BSP for ARM9 Evaluation Board (Sanket Dessai)

165

3. AT91SAM BOOTSTRAP FRAMEWORK

Figure 5. Bootstrap Framework

AT91Bootstrap application is considered as a first level bootloader. AT91Bootstrap is a modular
application so it becomes easy to specialize the framework for a particular deployment strategy.
AT91Bootstrap also provides clear examples, for a particular device, on how to perform some basic static
configurations such as PMC or PIOs. AT91Bootstrap can be easily configured using a higher level protocol
as shown in Figure 5. AT91Bootstrap integrates different sets of algorithms:
 Device initialization such as Clock Speed configuration, PIO settings.
 Peripheral drivers such as PIO, PMC or SDRAMC.
 Physical media algorithm such as DataFlash, NandFlash, Parallel Flash...
 File System drivers such as JFFS2 or FAT.
 Compression and Cipher algorithms
 Application Launcher for ELF, Linux.

Using this set of algorithms, it becomes easy to get a basic bootloader which, for example, is located
in DataFlash and will be copied to internal SRAM by SAM-BA Boot. That bootloader could, for example,
perform the processor initialization (PLLs, PIOs, SDRAMC, and SPI) then could load U-Boot from
DataFlash sectors to SDRAM and finally jump to it.

3.1. Compiling an AT91 Bootstrap Project

To compile AT91Bootstrap GNU tool chain is must install. Once your toolchain is installed, instal
AT91Bootstrap in a directory and cd into it
Make Command
To compile an AT91Bootstrap project:
• Go into the board directory
• Select your board by going into corresponding board directory
• Select your project by going into corresponding project directory
• Configure your project (Makefile and header file)
• Type make
> cd board/at91sam9260ek/nandflash
> make

3.2. ARM Bootloader

When system is powered on, the first piece of code called bootstrapping initializes basic hardware
and then brings up OS kernel. It can be included in a bootloader or in OS directly. First of all, to make an OS,
like Linux, boot, we must copy the kernel in memory and put the machine in a state that allow it to work
properly in the first critical steps. The little piece of software that is in charge on this job is the boot loader.
Classical boot loaders like LILO and GRUB are designed for more complex machines. For ARM based
platform, few boot loaders are available, but our choice was to take a boot loader named das U-Boot, for
universal boot. U-Boot supports the ARM Integrator/CP. In our project U-boot-1.1.5 version is chosen for
firmware design.

There are many Bootloader is available for arm target. ARMboot, Redboot, U-boot etc. following
points to be considered for bootloader selection:
 The Processor architectures and platforms that it supports
 The OS that it supports Debugging abilities, Stability and Portability Functionalities:

 ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 161 – 172

166

 Simple bootup, or with monitoring capability and lots of drivers support.
 The medium they are installed in usually ROM, EEPROM or Flash
 The storage device from which the kernel image is downloaded -- host PC, local Flash, disk, CF, etc.
 The device and protocol by which the kernel image is transmitted Serial port, USB, Ethernet, IDE, etc.
 The 'host-side' software used to transmit the kernel image

Based on these have selected das U-Boot for Universal boot. U-boot stands “Universal Bootloader”,
it’s an open source bootloader available under GPL license. Source code available at
http://sourceforge.net/projects/u-boot. It supports many CPU architectures and platform types like ARM,
PPC, and MIPS etc.

ARM Linux cannot be started on a machine without a small amount of machine specific code to
initialize the system. Most boot loaders start from the flash. They do the initial processor initialization such
as configuring the cache, setting up some basic registers, and verifying the onboard RAM. Also they run the
POST routines to do validation of the hardware required for the boot procedure such as validating memory,
flash, buses, and so on. In the first stage control sequence will set the exception vector and handlers, next
reset the control signal and set the CPU to following modes
 Set SVC Mode
 Turnoff Watchdog timers
 Disable IRQs
 Set the system clock

Once it is done control is given to cpu_init_crit, in this it has to flush the I and D cache as well as
flush the TLB and MMU stuff. Further we need to set the memory according to the CPU memory mapping.
After setting the memory control signal is return to start.s for further execution. Setup C environment and
run on RAM and copy U-Boot code/ initialized data to RAM.

3.3. Software Configuration

Configuration is usually done using C preprocessor defines; the rationale behind that is to avoid
dead code whenever possible. There are two classes of configuration variables:
 Configuration _OPTIONS_:
These are selectable by the user and have names beginning with "CONFIG_".
 Configuration _SETTINGS_:
These depend on the hardware etc. should not be meddled with if you don't know what you're doing; they
have names beginning with “CFG_". Configuration depends on the combination of board and CPU type; all
such information is kept in a configuration file "include/configs/<board_name>.h".

3.4. Inserting BSP in Kernel Module

The Linux BSP source code resides under arch/ and include/<asm-arm directories. Thus arch/arm
will contain the source files for the arm-based board and include/asm-arm will contain the header files. Under
processor directory, boards based on that CPU are categorized again into subdirectories. The important
directories under each subdirectory are:
Kernel: This directory contains the CPU-specific routines for initializing,
IRQ set-up, interrupts, and traps routines.
mm: Contains the hardware-specific TLB set-up and exception-handling code

For example, ARM BSP has the two subdirectories arch/arm/kernel and arch/arm/mm that hold the
above code. Along with these two directories there is a host of other subdirectories; these are the BSP
directories that hold the board-specific code only. The user needs to create a subdirectory tree under the
appropriate processor directory that contains the files necessary for the BSP. The next step is to integrate the
BSP with the build process so that the board-specific files can be chosen when the kernel image is built. This
may require that the kernel component selection process done using the “make menuconfig” command while
the kernel is built is aware of the board. Linux kernel components are selected using the make config (or the
make menuconfig/make xconfig) command. The heart of the configuration process is the configuration file
placed under the processor directory. You need to edit the file arch/arm/kconfig.in (for the 2.6 kernel) for
including AT91SAM based board components in the kernel build process.

3.5. Kernel Component Selection and Compilation

Once all above configuration is done, we have to select the kernel components by using make
menuconfig, which displays the console window; you can select required components for your target board.
The list of what software needs to go into the kernel and what can be compiled as modules can be specified

IJRES ISSN: 2088-8708

Development of BSP for ARM9 Evaluation Board (Sanket Dessai)

167

using this step. At the end of this step, kbuild records this information in a set of known files so that the rest
of kbuild is aware of the selected components. Component selection objects are normally:
a. Processor selection
b. Board selection
c. Driver selection
d. Some generic kernel options

There are many front ends to the configuration procedure; the following figure shows the kernel
configuration file. The top-level Makefile in the kernel sources is responsible for building both the kernel
image and the modules. It does so by recursively descending into the subdirectories of the kernel source tree.
Every architecture (the processor port) needs to export a list of components for selection during the
configuration process; this includes: Any processor flavor. For example, if your architecture is defined as
ARM, then you will be prompted as to which ARM flavor needs to be chosen.
 The hardware board
 Any board-specific hardware configuration
 The kernel subsystem components, which more or less remain uniform

Once the components selection is done configuration is saved to configuration file. Then zImage can
be generating by using make zImage.

3.6. Memory Mapping

The following Figure 6 shows the controller memory map a first level of address decoding is
performed by the Bus Matrix, i.e., the implementation of the Advanced High Performance Bus (AHB) for its
Master and Slave interfaces with additional features. Decoding breaks up the 4G bytes of address space into
16 banks of 256 Mbytes. The banks 1 to 7 are directed to the EBI that associates these banks to the external
chip selects EBI_NCS0 to EBI_NCS7. Bank 0 is reserved for the addressing of the internal memories, and a
second level of decoding provides 1 Mbyte of internal memory area. Bank 15 is reserved for the peripherals
and provides access to the Advanced Peripheral Bus (APB). Other areas are unused and performing an access
within them provides an abort to the master requesting such an access.

Each Master has its own bus and its own decoder, thus allowing a different memory mapping per
Master. However, in order to simplify the mappings, all the masters have a similar address decoding.
Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different Slaves are assigned to the
memory space decoded at address 0x0: one for internal boot, one for external boot, one after remap. The
system always boots at address 0x0. To ensure a maximum number of possibilities for boot, the memory
layout can be configured with two parameters. REMAP allows the user to lay out the first internal SRAM
bank to 0x0 to ease development. This is done by software once the system has booted. Refer to the Bus
Matrix Section for more details. When REMAP = 0, BMS allows the user to lay out to 0x0, at his
convenience, the ROM or an external memory. This is done via hardware at reset. The following flowchart
depicts the internal AT91SAM memory map. If BMS = 1, Boot on Embedded ROM The system boots using
the Boot Program.If BMS = 0, Boot on External Memory Boot on slow clock (On-chip RC or 32,768 Hz).
Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit data bus,
Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.

The internal memory is mapped from 0x0000 0000 to 0x0FFF FFFF. Boot memory is start from
0x0000 0000 address to 0x100000. 32k Bytes ROM is mapped from 0x10 0000 to 0x10 2000 is shown. Two
4 KB Fast SRAM0 and SRAM1 are also mapped. For more detail refer datasheet of this controller. The
system always boots at address 0x0. To ensure a maximum number of possibilities for boot, the memory
layout can be configured with two parameters. REMAP allows the user to lay out the first internal SRAM
bank to 0x0 to ease development. This is done by software once the system has booted. Refer to the Bus
Matrix Section for more details. When REMAP = 0, BMS allows the user to lay out to 0x0, at his
convenience, the ROM or an external memory. This is done via hardware at reset. The AT91SAM9260
matrix manages a boot memory that depends on the level on the BMS pin at reset. The internal memory area
mapped between address 0x0 and 0x000F FFFF is reserved for this purpose. If BMS is detected at 1, the boot
memory is the embedded ROM. If BMS is detected at 0, the boot memory is the memory connected on the
Chip Select 0 of the External Bus Interface.

The 64 MB of SDRAM is made available for running both the boot loader and Linux kernel.
Normally the boot loader is made to run from the bottom of the available memory so that once it transfers
control to the Linux kernel, the Linux kernel can easily reclaim its memory. The Linux memory map setup is
divided into four stages.
 The Linux kernel layout — the linker script
 The boot memory allocator
 Creating memory and IO mappings in the virtual address space

 ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 161 – 172

168

 Creation of various memory allocator zones by the kernel

Figure 6. Internal Memory Mapping

3.7. Root File Systems

A journaling flash filesystem (JFFS2) can be chosen to store our target’s root filesystem on flash
memory. We must have to create the JFFS2 image by using the mkfs.jffs2 utility and a directory tree
containing the filesystem that we want to load into flash. The Journaling Flash Filesystem, Version 2,
(JFFS2) is a filesystem specially designed for use on embedded devices, though it can also be used in other
environments. JFFS2 features automatic compression and decompression as files are written to and read from
the filesystem. Journaling means that updates to files and the filesystem itself (known as filesystem metadata)
are first stored in a special portion of the filesystem, called a journal or log, before actually being written to
the file system. Journaling file systems generally provide higher performance and require less time at restart
than non-journaled file systems because they minimize the need for the operating system to verify the
integrity of its file systems while the system is rebooting.

In ordinary, non-journaled file systems, changes are made directly to files and the file system.
Applications must typically wait until updates are successfully completed before they can continue execution.
This can reduce overall system performance and can also result in incomplete updates if a system crashes
while an application is in the middle of updating files. The default kernel configuration file includes support
for the JFFS2 filesystem. If you have modified or recreated this file and plan to use a JFFS2 file system with
your distribution, you should verify that JFFS2 support is still active in your kernel configuration. This
support is activated by selecting filesystem > Journaling Flash filesystem version 2 (EXPERIMENTAL)
from the configuration menu. To use a JFFS2 root filesystem, you first need to create a directory and
populate it with the applications you want to include in your JFFS2 root filesystem. You must then copy the
contents into a JFFS2 file system image. Creating a JFFS2 filesystem is done by using the mkfs.jffs2 utility
Because of ARM9 architecture, JFFS2 implements garbage collection on MTD blocks. This scheme works
fine in most cases. When the file system approaches its limits, however, JFFS2 spends an increasing amount

IJRES ISSN: 2088-8708

Development of BSP for ARM9 Evaluation Board (Sanket Dessai)

169

of time garbage collecting. Furthermore, as the file system reaches its limits, the system is unable to truncate
or move files and the access to files is slowed down. If you are using JFFS2, make sure your application's
data does not grow to fill the entire file system. In other words, make sure your applications check for
available file system space before writing to it in order to avoid severe slow down and system crashes.
The creation of a JFFS2 image is fairly simple:-

$ cd ${PRJROOT}
$ mkfs.jffs2 -r rootfs/ -o images/rootfs-jffs2.img
We use the -r option to specify the location of the directory containing the root filesystem, and the -

o option to specify the name of the output file where the file system image should be stored. The JFFS2
compression ratio is much smaller than CRAMFS. For a root file system containing 7840 KB, for example,
the resulting JFFS2 image is 6850 KB in size. The compression ratio is a little above 10%.

4. CONFIGURING THE TARGET

Figure 7. Configuring the Board and its Setup

Figure 7 shows the board configuration and setup, Connect the power supply included with the
AT91SAM9260 connect the AT91SAM9260 to the host computer by plugging the serial cable into the board.
Before porting bootloader, kernel image into DataFlash SAMBA-ISP (In System Programmer) is required,
this software is freely available, download this from atmel web site. Here we have used Windows operating
system to port the images.

4.1. Booting Strategy of AT91SAM Product

Several pieces of software are involved to boot a Linux kernel on SAM9 products. First is the ROM
code which is in charge to check if a valid application is present on supported media (FLASH,
DATAFLASH, NANDFLASH, and SDCARD). The boot sequence of Linux for SAM9260 is done in several
steps:
1. Boot Program - Check if a valid application is present in FLASH and if it is the case download it into

internal SRAM
2. AT91Bootstrap - In charge of hardware configuration, download U-Boot binary from FLASH to

SDRAM, start the bootloader
3. U-Boot - The bootloader, in charge of download kernel binaries from FLASH, network, USB key, etc.

Start the kernel.
4. Linux kernel - The operating system kernel.
5. Root Filesystem - Contains applications which are executed on the target, using the OS kernel services.

 ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 161 – 172

170

4.2. Load AT91Bootstrap on SAM9 board
AT91Bootstrap is a first step bootloader providing a set of algorithms to manage hardware

initialization (GPIO, Clock, SDRAM, etc), to download your main application from specified FLASH media
to main memory and to start it.

Figure 8. Bootstrap Execution Window

4.3. Load AT91Bootstrap on SAM9 board
This section describes How to load u-boot into the boot media with SAM-BA. Copy the U-Boot file into
DataFlash as follows:
1. In the Send File Name field, click the Browse button.
2. Select u-boot-9260-env-dataflash.bin and click Open.
3. In the Address text field, enter 0x8000, and then click the Send File button is shown in Figure 9.

Figure 9. Bootloader Installation

IJRES ISSN: 2088-8708

Development of BSP for ARM9 Evaluation Board (Sanket Dessai)

171

After bootloader installation, when you start or reset the board, U-Boot autoboots with a display in
the console like the following one. Press any key to stop the autoboot process, so that you can set the target’s
environment variables. Set the kernel loading address, IP address, boot argument values etc is shown below
figure 9. If you do not change this envi-ronment variable, the kernel might not boot successfully, reporting a
GZIP error or restarting while uncompressing the kernel image. This is particularly likely if you are trying to
boot a large kernel over the network.

Figure 10. U-boot Environment Setup

4.4. Downloading and Booting the Kernel

Connect your Ethernet cable to the target board and to your host computer. Then, return to the U-
Boot> prompt in U-Boot and use the tftp command to download the kernel image. After a few seconds, the
bootloader transfers the kernel image to the board and the prompt returns. When the download is complete,
use the bootm command to boot the kernel.

Figure 11. Kernel Image Compilation

 ISSN: 2089-4864

IJRES Vol. 4, No. 3, November 2015 : 161 – 172

172

5. CONCLUSION
Board supporting package was customized and successfully implemented on ARM9 evaluation kit.

The Cadenux development environment consists of the GUI-based BSP configuration tool, memconfig. This
is a one stop for building all the components of BSP such as the Linux kernel, bootloader, and file systems.
The BSP porting is a complicated task. It involves good understanding of the hardware, Linux Kernel,
bootloader, memory mapping and specialized knowledge of debugger operation. It was realized that the
understanding of the Hardware and Software flow maps was essential. Note that both arm-elf- and arm-linux-
ARM GCC cross-compiler types are suitable for u-boot building Bootloader. Choosing the right Linux kernel
version is very important for the successful completion of this project. Because old kernel version will not
provide the quality of feature, By using a Linux-based host development environment, most of the
applications that are to be run on the target hardware can be tested on a Linux host, reducing time to port
applications. A journaling file system built specifically for storage on flash, JFFS2 was added only for the 2.6
kernel. The 2.6 kernel can be considered a good port for using NAND flash. So we have used JFFS2 as a file
system.

REFERENCES
[1] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. “Porting Choices to ARM Architecture Based

Platforms”, Campbell, University of Illinois at Urbana-Champaign, http://choices.cs.uiuc.edu/, Draft of 2007/01/12
15:12.

[2] Inder M. Singh, "Embedded Linux the 2.6 kernel is ideal for specialized devices of all sizes", white paper, Aug-
2004, permission of Quarter Power Media, publishers of Linux Magazine, www.linuxmagazine.com

[3] Steven L. Rodgers and James B. Calvin, Jr. "The Complleing Case for Open Source Embedded Tools” White
Paper, 8 December 2002.

[4] William von Hagen, “Migrating custom Linux installations to 2.6”, White Paper, 5 March 2004.
[5] William von Hagen and David, “Overview of Device Drivers and Loadable Kernel Modules”, white paper, 13 Feb

2004.
[6] David Woodhouse, “JFFS: The Journalling Flash File System”, White Paper, Red Hat, Inc. 13 Jan 2005
[7] Katayama, T. Saisho, and K.Fukuda, “Prototype of the device driver generation system for UNIX-like operating

systems”, International Symposium on Linux System, pp. 302-310, March 2000.
[8] AT91SAM9260 Datasheet.
[9] Karim Yaghmour, "Building Embedded Linux System", First Edition, O'Reilly and Associates Inc., 2003
[10] P. Raghavan, Amol Lad and Sriram Neelakandan “Embedded Linux System Design and Development”, First

Edition, Auerbach Publications, 2006.

