
International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol. 4, No. 2, July 2015, pp. 71~81
ISSN: 2089-4864 71

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

Design of Secure Transmission of Multimedia Data Using SRTP
on Linux Platform

Shashidhar H.G., Sanket Dessai, Shilpa Chaudhari
Department of Computer Engineering, M.S. Ramaiah School of Advanced Studies, Bangalore-560058, India

Article Info ABSTRACT

Article history:

Received Dec 2, 2014
Revised Mar 18, 2015
Accepted Apr 15, 2015

 This paper aims for providing a viable solution for security in streaming
media technology. Service providers do not want the end users to capture and
duplicate streaming media data. Once captured data can be re-distributed to
millions without any control from the source. Licensing issues also dictate
the number of times end user may utilize the data. Encryption is not
sufficient as it leaves the system vulnerable to duplication and recording after
decryption. In this paper an attempt has been made to transmit digital
multimedia data to multiple users. The transmission of the video/audio data
has been attempted from one PC to another PC. While doing this, security
considerations have to be taken care by using suitable encryption/decryption
techniques. A research carried out on the different data transmission
protocols reveals that the Secure Real Time Transport Protocol (SRTP) is
one of the best available protocols. Hence the SRTP has been deployed in
this project on Linux OS using socket programming. The code for the
transmitter and the receiver is designed and developed around the SRTP
library for transmission of multimedia data. The solution is illustrated by
choosing an example of a video clip for transmission and reception. This
model increasing the security of streaming media and adds a measure of
integrity protection, but it is primarily intended to aid in replay preventions.

Keyword:

Authentication
Security
MPEG
RTP/RTCP
SRTP

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Sanket Dessai,
Departement of Computer Engineering, M.S. Ramaiah School of Advanced Studies,
#470-P, Peenya Industrial Area, Bangalore, Karnataka, India. 560058.
Email: sanketdessai@msrsas.org

1. INTRODUCTION

Due to recent advances in technology, streaming media including real time audio and video
conferencing has become a popular and important aspect of telecommunication. Often, streaming content
providers do not want the end users to capture and duplicate the streamed media, since once such data is
captured it can be freely re-distributed without any control from the source. Privacy and integrity are crucial
for successful video or audio conferencing. Note that data encryption [1] does not generally suffice, since it
leaves the system vulnerable to duplication and recording after decryption. Possible sources of streamed
media include stored data, live broadcasts and interactive conferencing. We focuses on live broadcast media
as our case study but the results are easily extended to stored media or interactive conferencing.

Secure real-time communication over insecure networks generally involves two major security
concern authentication and privacy [2]. The real-time transport protocol (RTP) is used to transport a media
stream between two multimedia terminals. Secure RTP employs encryption techniques on the RTP stream
[3].

 ISSN: 2089-4864

IJRES Vol. 4, No. 2, July 2015 : 71 – 81

72

2. SRTP (SECURE REAL-TIME TRANSPORT PROTOCOL)
The Secure Real-time Transport Protocol (SRTP) defines a framework which provides

confidentiality, message authentication, and replay protection for both unicast and multicast RTP and RTPCP
streams. SRTP is very suitable for VoIP applications, especially those involving low-bit rate voice codecs
(i.e.G.729, iLBC, MELP, etc.) since it can be used with header compression and has no significant impact on
Quality of Service. It can also be used to with JPEG, MPEG2, and MPEG4 to securely stream video in
multimedia applications. SRTP can achieve high throughput and low packet expansion even in environments
that are a mixture of wired and wireless networks. [8]

SRTP is the security layer which resides between the RTP/RTCP application layer and the transport
layer, generating SRTP packets from the RTP/RTCP stream and forwarding these to the receiver. Similarly,
it also transforms incoming SRTP packets to RTP/RTCP packets and passes these up the stack.

The cryptographic state information associated with each SRTP stream is termed the cryptographic
context. It must be maintained by both the sender and receiver of SRTP streams. If there are several SRTP
streams present within a given RTP session, separate cryptographic contexts must be maintained for each. A
cryptographic context includes any session key (a key directly in encryption/message authentication) and the
master key as well as other working session parameters. While SRTP does not define a precise mechanism to
implement key exchange, it does provide for several features which make key management easier and
heighten overall key security. The single master key is used to provide keying material for a key derivation
function. This can generate the initial session keys, as well as provide new session keys periodically to ensure
that there will be a limited amount of cipher text produced by any given encryption key. Salting keys are used
to provide protection against various assaults such as pre-computation and time-memory attacks. [8]

3. REQUIREMENT ANALYSIS
• The network protocol used to transmit the multimedia data: Secure Real Time protocol (SRTP) is

used to transmit multimedia over the network. The designers of SRTP focused on developing a protocol
that can provide adequate protection for media streams but also maintain key properties to support wired
and wireless networks in which bandwidth or underlying transport limitations may exist.

• Securing the multimedia data: Private Key cryptography is chosen. The algorithm for encryption and
decryption chosen is AES. Here selective encryption/decryption method has been chosen as opposed to
conventional heavy weight encryption as the computation time is reduced.

• MPEG1 has been chosen as the type of multimedia data in this project.

4. DESIGN: CLIENT SERVER DESIGN

Applications are usually designed so that one computer acts as a server, providing a service to other
computers on a network. To access a server, a program is run on a user’s computer this is called a client
program. The program establishes a connection through the network allowing communication with the
server. The security model includes a license manager to manage access to requested data. The operation of
this feature will be described in more detail below.

Figure 1. Client/Server Interaction across a Packet Data Network

IJECE ISSN: 2088-8708

Design of Secure Transmission of Multimedia Data Using SRTP on Linux Platform (Sanket Dessai)

73

Another security feature involves a scrambling algorithm, which is employed by the server and a
corresponding de-scrambling algorithm, which is employed by the client. A scrambling algorithm should be
unknown to a potential attacker and an attacker must be required to break the scrambling algorithm in order
to recover any of the data. In addition, the server must have access to a significant number of distinct
scrambling algorithms.

 Scrambling serves two purposes. First, the scrambling algorithm creates a layer of obfuscation,
making reverse engineering of the client software more difficult. Second, scrambling provides for a high
degree of individualization of the client software. Consequently, scrambling algorithms that are unknown to a
potential attacker are preferred.

Perhaps the ideal scrambling algorithm is a cryptosystem, since it could be applied to all of the data.
However, no cryptographic algorithm is considered secure until it has undergone extensive peer review and
withstood the test of time. But the scrambling algorithm is not essential for cryptographic strength, since
standard strong encryption algorithms are employed for cryptographic strength. Given such a set of
scrambling algorithms, each client will be equipped with a subset of the available scrambling algorithms.
The list of scrambling algorithms known to the client will be encrypted with a key known only to the server,
and stored on the client. After authenticating the server, this encrypted list will be passed from the client to
the server. When the server receives the list, the server decrypts it and randomly chooses from among the
client’s scrambling algorithms. The ID number of the selected scrambling algorithm is then passed from the
server to the client. Note that this process eliminates the need for a database containing the mappings
between clients and scrambling algorithms.

By having different scrambling algorithms embedded within different clients, and by selecting at
random from a client’s algorithms, each client is unique, and each communication between client and server
depends not only on different keys, but also on different algorithms embedded in the client software. An
attacker, who is able to break one particular piece of content, will likely still have a challenging task when
trying to break another piece of content destined for the same client. And even if an attacker completely does
reverse engineering on one client, it is likely that he will still need to expend roughly the same effort to attack
any other client.

On the server side, the data is scrambled, and then encrypted. On the client side, the data is
decrypted and the resulting scrambled data is passed to the media application. The media application passes
the scrambled data to the secure device driver (discussed in more detail below), which de-scrambles the data.
In this way, the data is obfuscated until the last possible point in the process.
 Given the security features, the secure streaming media process proceeds as follows:
 The secure web server offers streaming media services.
 A client requests a media file from the server
 The secure authenticates the user and the user authenticates the server
 The license manager verifies that the user on that particular machine is allowed access to the requested

media file.
 If the user is allowed access, the License Manger generates two random keys. The first key will be for

secure RTP packet encryption using AES and the second key will be the scrambling key used on message
blocks of media data.

 The server generates a random number to select from among the scrambling algorithms supported by the
client. It generates another random number to be used as the key for the scrambling algorithm. Both of
these are encrypted (but not scrambled) and passed to the client. The client must acknowledge receipt of
this information.

 The server use cipher block chaining (CBC) to scramble the data per packet, with a randomly selected
initialization vector (IV) included with each packet for cryptographic terminology and information.

 The secure RTP algorithm with the Advanced Encryption Algorithm (AES) with 128-bit key is applied to
the scrambled data in each packet. The packets are CBC encrypted with a random IV included in each.

 The scrambled and encrypted secure RTP packets are transmitted over the network.
 The client opens the secure media application from the file. Block diagram of this is shown in figure 1.
 The media application requests the secure RTP decryption key. The user must authenticate in order for

the client to obtain the decryption key.
 The media application strips the secure RTP header and sequences the packets.
 The media application is oblivious to the scrambling. It therefore writes the scrambled data to the device

that plays the file. The interaction between client and server is shown in figure 2.

 ISSN: 2089-4864

IJRES Vol. 4, No. 2, July 2015 : 71 – 81

74

Figure 2. Block Diagram of the Design of the Secure System with Client/Server Interaction

Figure 3. Flow Diagram for the Secure SRTP Transmission

5. IMPLEMENTATION: CLIENT SERVER DESIGN

The implementation section describes in detail the various components of the secure streaming
media system. For a complete source code listing kindly see the appendix. Some of the functions used are
listed below.

IJECE ISSN: 2088-8708

Design of Secure Transmission of Multimedia Data Using SRTP on Linux Platform (Sanket Dessai)

75

• err_status_t srtp_init (void)
srtp_init () initializes the srtp library.

• err_status_t srtp_protect (srtp_t ctx, void *rtp_hdr, int *len_ptr)
srtp_protect () is the Secure RTP sender-side packet processing function.

• err_status_t srtp_unprotect (srtp_t ctx, void *srtp_hdr, int *len_ptr)
srtp_unprotect () is the Secure RTP receiver-side packet processing function.

• err_status_t srtp_create (srtp_t *session, const srtp_policy_t *policy)
srtp_create () allocates and initializes an SRTP session.

• err_status_t srtp_add_stream (srtp_t session, const srtp_policy_t *policy)
srtp_add_stream () allocates and initializes an SRTP stream within a given SRTP session.

• err_status_t srtp_remove_stream (srtp_t session, uint32_t ssrc)
srtp_remove_stream () deallocates an SRTP stream.

• void crypto_policy_set_rtp_default (crypto_policy_t *p)
crypto_policy_set_rtp_default () sets a crypto policy structure to the SRTP default policy
for RTP protection.

• void crypto_policy_set_rtcp_default (crypto_policy_t *p)
crypto_policy_set_rtcp_default () sets a crypto policy structure to the SRTP default policy
for RTCP protection.

• void crypto_policy_set_aes_cm_128_hmac_sha1_32 (crypto_policy_t*p)
crypto_policy_set_aes_cm_128_hmac_sha1_32 () sets a crypto policy structure to a short-
authentication tag policy

• void crypto_policy_set_aes_cm_128_null_auth (crypto_policy_t *p)
crypto_policy_set_aes_cm_128_null_auth () sets a crypto policy structure to an
encryption-only policy

• void crypto_policy_set_null_cipher_hmac_sha1_80 (crypto_policy_t *p)
crypto_policy_set_null_cipher_hmac_sha1_80 () sets a crypto policy structure to an
authentication-only policy

• err_status_t srtp_dealloc (srtp_t s)
srtp_dealloc () deallocates storage for an SRTP session context.

• err_status_t crypto_get_random (unsigned char *buffer, unsigned int length)
writes a random octet string.

LibSRTP: To install libSRTP, download the latest release of the distribution from srtp.sourceforge.net. The
format of the names of the distributions is srtp-A.B.C.tgz, where A is the version number, B is the major
release number, C is the minor release number, and tgz is the file extension. Unpack the distribution and
extract the source files the directory into which the source files will go is named srtp.Implementation details
in Linux using kernel 2.4.16 are given below in detail.
Server components: libSRTP was installed on the server and uses the GNU autoconf and make utilities. In
the srtp directory, run the configure script and then make:
. /configure [options]
make
The configure script accepts the following options:
• Help-provides a usage summary.
• Disable-debug compiles libSRTP without the runtime dynamic debugging system.
• Enable-generic-aesicm compile in changes for ismacryp
• Enable-syslog use syslog for error reporting.
• Disable-stdout disables stdout for error reporting.
• Enable-console use /dev/console for error reporting
• Gdoi- use GDOI key management (disabled at present).
License Manager:
• The receiver sends a string of supported algorithms in encrypted form. The server randomly elects one of

the supported algorithms, maps the client algorithm to its server algorithm and sends the selected
algorithm number to the receiver. The server then starts sending the streaming data in predefined packet
size.

• The license manager maintains a list of multimedia data files and corresponding username and number of
times the user is permitted to invoke that file. On each invocation, the license manager decrements by
one the allowed number for that particular user. If the user is allowed infinite number of accesses, then
the license manager will not decrement the number of times allowed on each execution. Access is

 ISSN: 2089-4864

IJRES Vol. 4, No. 2, July 2015 : 71 – 81

76

allowed on a particular file only if the times allowed are greater than zero. In practice this logic could be
easily implemented using a secure database system.

• The license manager also maintains a list of broken scrambling algorithms. If the license manager detects
that all the supported algorithms at the receiver end are broken, it will ask the server to terminate its
connection with the receiver without giving any explanation to the receiver.

Receiver Side Components
• libSRTP was installed on the receiver side and uses the GNU autoconf and make utilities as we did in

server side , same as to be carried out in receiver side .
• The usage for client_server.c is
• client_server [[-d <debug>]* [-k <key> [-a][-e]] [-r] dest_ip dest_port][-l]

5.1. SRTP Crytographic Context

Each SRTP stream requires the sender and receiver to maintain cryptographic state information.
This information is called the "cryptographic context".
SRTP uses two types of keys:
1. Session keys and
2. Master keys.

By a "session key", we mean a key, which is used directly in a cryptographic transform (e.g.,
encryption or message authentication), and by a "master key", we mean a random bit string (given by the key
management protocol) from which session keys are derived in a cryptographically secure way. The master
key(s) and other parameters in the cryptographic context are provided by key management mechanisms
external to SRTP. [15]

5.2. Mapping SRTP Packets to Cryptographic Contexts

RTP session for each participant is defined [RFC3550] by a pair of destination transport addresses
(one network address plus a port pair for RTP and RTCP), and that a multimedia session is defined as a
collection of RTP sessions. For example, a particular multimedia session could include an audio RTP
session, a video RTP session, and a text RTP session.
A cryptographic context SHALL be uniquely identified by the triplet context identifier:
context id = <SSRC, destination network address, destination transport port number>

Where, the destination network address and the destination transport port are the ones in the SRTP
packet. It is assumed that, when presented with this information, the key management returns a context with
the information.

As noted above, SRTP and SRTCP by default share the bulk of the parameters in the cryptographic
context. Thus, retrieving the crypto context parameters for an SRTCP stream in practice may imply a binding
to the correspondent SRTP crypto context. It is up to the implementation to assure such binding, since the
RTCP port may not be directly deducible from the RTP port only. Alternatively, the key management may
choose to provide separate SRTP- and SRTCP- contexts, duplicating the common parameters (such as master
key(s)). The latter approach then also enables SRTP and SRTCP to use, e.g., distinct transforms, if so
desired. Similar considerations arise when multiple SRTP streams, forming part of one single RTP session,
share keys and other parameters.

If no valid context can be found for a packet corresponding to a certain context identifier, that
packet MUST be discarded. [15]

5.3. Algorithm of SRTP Packet Processing

The following applies to SRTP.Assuming initialization of the cryptographic context has taken place
via key management; the sender SHALL do the following to construct an SRTP packet:
Step-1: Determine which cryptographic context to use.
Step-2: Determine the index of the SRTP packet using the rollover counter, the highest sequence number in
the cryptographic context, and the sequence number in the RTP packet.
Step-3: Determine the master key and master salt. This is done using the index determined in the previous
step or the current MKI in the cryptographic context.
Step-4: Determine the session keys and session salt key (if they are used by the transform), using master key,
master salt, key_derivation_rate, and session key-lengths in the cryptographic context with the index.
Step-5: Encrypt the RTP payload to produce the Encrypted Portion of the packet, This step uses the
encryption algorithm indicated in the cryptographic context, the session encryption key and the session salt
(if used) found in Step 4 together with the index found in Step 2.
Step-6: If the MKI indicator is set to one, append the MKI to the packet.

IJECE ISSN: 2088-8708

Design of Secure Transmission of Multimedia Data Using SRTP on Linux Platform (Sanket Dessai)

77

Step-7: For message authentication, compute the authentication tag for the Authenticated Portion of the
packet, this step uses the current rollover counter, the authentication algorithm indicated in the cryptographic
context, and the session authentication key found in Step 4. Append the authentication tag to the packet.

5.4. Algorithm of Authenticate and Decrypt an SRTP Packet
Step-1: Determine which cryptographic context to us.
Step-2: Run the algorithm to get the index of the SRTP packet. The algorithm uses the rollover counter and
highest sequence number in the cryptographic context with the sequence number in the SRTP packet.
Step-3: Determine the master key and master salt. If the MKI indicator in the context is set to one, use the
MKI in the SRTP packet, otherwise use the index from the previous step.
Step-4: Determine the session keys, and session salt (if used by the transform) using master key, master salt,
key_derivation_rate and session key-lengths in the cryptographic context with the index, determined in Steps
2 and 3.
Step-5: For message authentication and replay protection, first check if the packet has been replayed, using
the Replay List and the index as determined in Step 2. If the packet is judged to be replayed, then the packet
MUST be discarded, and the event SHOULD be logged. Next, perform verification of the authentication tag,
using the rollover counter from Step 2, the authentication algorithm indicated in the cryptographic context,
and the session authentication key from Step 4. If the result is "AUTHENTICATION FAILURE”, the packet
MUST be discarded from further processing and the event SHOULD be logged.
Step-6: Decrypt the Encrypted Portion of the packet, using the decryption algorithm indicated in the
cryptographic context, the session encryption key and salt (if used) found in Step 4 with the index from Step
2.
Step-7: Update the rollover counter and highest sequence number, s_l, in the cryptographic context, using the
packet index estimated in Step 2. If replay protection is provided, also update the Replay List.
Step-8: When present, remove the MKI and authentication tag fields from the packet.

6. RESULTS

The below given Figure 4, showing the result of sender side (Server), where streaming of words
taking place towards client side taking place. This snap shot include the SSRC valve cipher key,
authentication key, estimated packet index SRTP authentication tag including master key/salt key given
during initial setup. The below given Figure 5, showing the result at client side, where the words sent from
server side is in encrypted form from this we can tell that no one can understand anything if that data is
accessed in middle during transmission. The below given Figure 6, showing the result at client side, where
the words sent from server side is in original form, this is possible after decrypting the data sent by sender.

Figure 4. MPEG Video Clip Data Sending From Server to Client

 ISSN: 2089-4864

IJRES Vol. 4, No. 2, July 2015 : 71 – 81

78

The above given Figure 7, showing the result of sender side, where streaming of MPEG clip taking
place towards client side taking place. The below given Figure 8, showing the frame of playing original clip
which has to be sent from server side to client side. The below given Figure 9, showing the frame of playing
encrypted clip which has sent from server side to client side.The below given Figure 10, showing the frame
of playing clip after decrypting the encrypted clip sent from server side to client side.

Figure 5. The Results of Client Side, Where Stream of Words sent from Server in Encrypted Form

Figure 6. The Results of Client Side, Where Stream of Words sent from Server in been Received at Client
Side in a Secured Manner

IJECE ISSN: 2088-8708

Design of Secure Transmission of Multimedia Data Using SRTP on Linux Platform (Sanket Dessai)

79

Figure 7. MPEG Video Clip Data Sending From Server to Client

Figure 8. MPEG Video Clip Data Receiving From Server by Client

Figure 9. Frame of Origional Video Clip

 ISSN: 2089-4864

IJRES Vol. 4, No. 2, July 2015 : 71 – 81

80

Figure 10. Frame of Encrypted Video Clip

Figure 11. Frame of Video Clip after Decryption

7. TESTING

Table 1. Test Drive and its Functions
Test Driver Function Tested

kernel_driver crypto kernel (ciphers, auth funcs, rng)

srtp_driver Srtp in-memory tests (does not use the network)

rdbx_driver rdbx (extended replay database)

roc_driver extended sequence number functions

replay_driver replay database

cipher_driver ciphers

auth_driver Hash functions

Several test drivers and a simple and portable srtp application is included in the test/ subdirectory. Some of
the test driver and its Function tested using this libsrtp are listed above in table 1.

The application for media client_server.c is a simple rtp application which reads data from particular
file and then sends them out one at a time using [s]rtp. Manual srtp keying uses the -k option automated key
management using gdoi will be added later.
The usage for client_server.c is
client_server [[-d <debug>]* [-k <key> [-a][-e]] [-s | -r] dest_ip dest_port][-l]
Either the -s (sender) or -r (receiver) option must be chosen. The values dest_ip, dest_port are the IP address
and UDP port to which the dictionary will be sent, respectively. The options are:
- s (S)RTP sender - causes app to send data
- r (S)RTP receive - causes app to receive data
- k <key> use SRTP master key <key>, where the key is a hexadecimal value (without the leading "0x")
- e encrypt/decrypt (for data confidentiality) (requires use of -k option as well)
- a message authentication (requires use of -k option as well)
- l list the available debug modules

IJECE ISSN: 2088-8708

Design of Secure Transmission of Multimedia Data Using SRTP on Linux Platform (Sanket Dessai)

81

- d <debug> turn on debugging for module <debug>
Since this is the receiver side (client) the usage of client should be the usage for client_server.c is
client_server [[-d <debug>]* [-k <key> [-a][-e]] [-s] dest_ip dest_port][-l]

8. CONCLUSION

SRTP has been used for secure transmission of multimedia data from one PC to another PC. The
multimedia has been secured using AES algorithm. The technique applied for encryption/decryption is
lightweight. The encryption and the decryption of the multimedia GOP have been achieved successfully.

The sending and receiving of responses from the client and server are done in the UDP/IP-based
transport layer. With any conceivable personal computer based security model, a dedicated hacker can, with
sufficient effort, successfully attack a particular piece of content. This is unavoidable if the media is to be
rendered on a system with an open architecture (such as a personal computer) where the attacker controls the
system. Under the proposed secure streaming media system, the amount of work required for such an attack
would be significant. However, the real strength of this approach is that the overall system will survive even
when individual pieces of content are successfully hacked.

REFERENCES
[1] William Stallings, Cryptography and Network Security: Principles and Practices, Prentice Hall, 2003.
[2] Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: PRIVATE Communications in a PUBLIC

World, Prentice Hall, 2002.
[3] The Secure Real Time Transport Protocol, IETF draft, http://www.globecom.net/ietf/draft/draft-ietf-avt-srtp-

00.html
[4] Secure RTP, http://www.vovida.org/protocols/downloads/srtp/
[5] D. Cohen. "Specifications for the Network Voice Protocol", Network Working Group, RFC 741, November 1977.
[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, R. Sparks, M. Handley, and E. Schooler. "SIP: Session

Initiation Protocol", Internet Engineering Task Force, RFC 3261, June 2002.
[7] H. Schulzrinne, A. Rao, and R. Lanphier. "Real Time Streaming Protocol (RTSP)", Internet Engineering Task

Force, RFC 2326, April 1998.
[8] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman. “The Secure Real-time Transport Protocol

(SRTP)”, IETF RFC 3711, March 2004.
[9] Coded Representation of Picture, Audio and Multimedia/Hypermedia Information. Committee Draft of standard

ISO/IEC 13818-2, 2000.
[10] Confidential multimedia communication in IP networks: Communication Systems, Volume 1, Issue, 25-28 Nov.

2002 Page(s): 516 - 523 vol.1
[11] Jayshri Nehete, K. Bhagyalakshmi, M. B. Manjunath, Shashikant Chaudhari, T. R. Ramamohan, “A Real-time

MPEG Video Encryption Algorithm using AES”, for NCC-2003.
[12] Andreas Uhl and Andreas Pommer, “Image and Video encryption From Digital Rights Management to Secured

Personal Communication”, Springer, 2005.
[13] George Anastasios Spanost and Tracy Bradley Maples, “Performance Study of a Selective Encryption Scheme for

the Security of Networked, Real-Time Video”, Proceedings of the Fourth International Conference on Computer
Communications and Networking, Las Vegas, Nevada. October 1995.

[14] William Stalling, “Cryptography and Network Security Principles and Practices”, Pearson education, 2003.
[15] Network Working Group, M. Baugher, Request for Comments: 3711, D. McGrew, March 2004.
[16] Siddique S, Ege R.K, Sadjadi. S.M., “Multimedia Communication”, Proceedings of IEEE Transactions on

Modeling of multimedia streaming, pp.271-276, April 2005.
[17] Dapeng Wu Hou Y.T, Wenwu Zhu, Ya-Qin Zhang, Peha J.M, “Streaming Video Over Internet: Approaches and

Direction”, IEEE Transactions On Circuits and systems for Video Technology, Vol. 11, Issue no. 3, pp. 282-300,
March 2001.

[18] Fortino G, Russo W, Zimeo E, “Enhancing cooperative playback systems with efficient encrypted multimedia
streaming”, IEEE Transactions On multimedia and expo, Vol. 2, Issue no. 6, pp. 57-60, July 2003.

[19] Lo Iacono L., Ruland C, “Confidential multimedia communication in IP networks”, IEEE Transactions On
Communication Systems, Vol. 1, Issue no. 25, pp. 516-523, November 2002.

[20] Hess A, Klaue J., “A video-spam detection approach for unprotected multimedia flows based on active networks”,
IEEE transactions on multimedia security, Vol. 30, Issue no. 31, pp. 461-465, Sep 2004.

[21] Xinmiao Zhang, Parhi K.K, “Implementation approaches for the Advanced Encryption Standard algorithm”, IEEE
Transactions On Circuits and Systems Magazine, Vol. 2, Issue no. 4, pp. 24 – 46, Oct 2002.

[22] Kaindl, M. Hagenauer, J. “Multimedia data transmission over mobile Internet” Volume: 4, on pp 2015- 2019, Feb
2006.

[23] Kami H., Kurashige T., Higashi M., Imaide T., Kinugasa T. “Consumer Electronics”, ICCE. International
Conference on, pp 82 – 83, 1999.

